• Title/Summary/Keyword: Coupling coefficient

Search Result 530, Processing Time 0.027 seconds

SIMULTANEOUS SWITCHING NOISE MINIMIZATION TECHNIQUE USING DUAL LAYER POWER LINE MUTUAL INDUCTORS (이중 층 파워 메탈구조의 상호 인덕터를 이용한 동시 스위칭 잡음 최소화 기법)

  • Lee, Yong-Ha;Kang, Sung-Mook;Moon, Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.44-50
    • /
    • 2002
  • A novel technique for minimization of simultaneous switching noise is Presented. Dual Layer Power Line (DLPL) structure i:; newly proposed for a possible silicon realization of a mutual inductor, with which an instant large current in the power line is half-divided flowing through two different, but closely coupled, layers in opposite directions. This mutual inductance between two power layers enables us to significantly reduce the switching noise. SPICE simulations show that with a mutual coupling coefficient higher than 0.8, the switching noise reduces by 63% compared to the previously reported solutions. This DLPL technique can also be applied to PCB artworks.

The Design of a Broadband E-plane H Sectoral Horn Phased Array Antenna Using Mutual Coupling (상호 결합을 이용한 광대역 E-면 H 섹터 혼 위상 배열 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.620-628
    • /
    • 2007
  • An H-sector horn antenna has a constant beam coverage characteristic and it can be useful for application to a wide band phased array antenna system. In this paper, we designed a broadband E-plane H-sector horn phased-array antenna, which has a 3:1 bandwidth and ${\pm}60^{\circ}$ beam steering capability. An H-sector hem antenna was designed to have $30{\sim}50^{\circ}$ half-power beam width in the principal H-plane. The active reflection coefficient including mutual coupling was calculated using a waveguide simulator, and the active reflection characteristic was improved by mutual coupling over wide frequency range. Using these results, an $8{\times}1$ H-sector phased array antenna was fabricated. The measurement results for the half-power beam width in the principal H-plane and the active reflection coefficient showed a good agreement with the simulation results. The peak-value pattern in the steered radiation beams also agreed well with the active element pattern. The measured active reflection coefficients within the beam steering range are mostly less than 0.3 over the 3:1 frequency range.

The Design of Cavity Filter to enhance the Group Delay characteristics for 5G Mobile Communication Repeater (군 지연 특성을 개선한 5G 이동통신 중계기용 캐비티 필터의 설계)

  • Yoo, Soo-Hyung;Jin, Duck-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1032-1039
    • /
    • 2022
  • In this paper, we designed and implemented a cavity bandpass filter combined with a cross-coupling equalizer structure to enhance Group delay for 5G mobile network repeater, which can replace the SAW (Surface Acoustic Wave) type bandwidth filter used in the existing mobile communication system. Using the 3D EM simulation tool (HFSS), the resonance frequency, the coupling coefficient between resonators, and external quality coefficient between resonators were calculated. Based on this, a 12th bandpass filter was constructed to have attenuation characteristics of more than 20dB at the edge end of both sides of the band with a metal cavity structure with a frequency band of 3500MHz to 3600MHz and bandwidth of 97.85MHz. The designed bandpass filter satisfies the group delay time requirement for the 5G mobile communication standard and the in-band and out-band frequency responses.

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

Improvement of the Beam-Wave Interaction Efficiency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

  • Zhu, Sairong;Yin, Yong;Bi, Liangjie;Chang, Zhiwei;Xu, Che;Zeng, Fanbo;Peng, Ruibin;Zhou, Wen;Wang, Bin;Li, Hailong;Meng, Lin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1362-1369
    • /
    • 2018
  • A method aimed at improving the beam-wave interaction efficiency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The dispersion characteristics, coupling coefficient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam-wave interaction efficiency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction efficiency so that the EIOs are able to work in the $2{\pi}$ mode. The influence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction efficiency. Its maximum output power is 2.8 kW and the efficiency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot configurations enables the extended interaction oscillator to meet the different engineering requirements better.

Effects of Working Fluid Filling Ration and Heat Flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon

  • Chang, Ki-Chang;Lee, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying the loop thermosyphon to heat exchanger de-sign. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in the range of 13000~78000 W/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\pm$5% and $\pm$20% respectively.

Simulation of a two-stage absorption heat pump cycle using treated sewage (하수처리수 이용 흡수식 열펌프 사이클의 시뮬레이션)

  • 이용화;신현준;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.422-430
    • /
    • 1999
  • This paper concerns the study of a two-stage absorption heat pump cycle to utilize treated sewage. This two-stage cycle consists of coupling double-effect with parallel or series flow type and single effect cycle so that the first stage absorber and condenser produces hot water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as absorber temperature on the coefficient of performance have been studied for two-stage absorption heat pump cycle. The working fluid is lithium bromide and water solution. The efficiency of the two-stage absorption heat pump cycle has been studied and simulation results show that higher coefficient of performance could be obtained for the first stage with parallel flow type. The optimum ratio of solution distribution can be shown by considering the COP, the crystallization of solution and the generator temperature.

  • PDF

Effects of Working Fluid Filling Ratio and Heat flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon (루프 써모사이폰에서 작동유체 충액률과 열유속이 열전달계수의 상관식에 미치는 영향)

  • 장기창;이기우;이영수;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.462-473
    • /
    • 2001
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying th loop thermosyphon to heat exchanger design. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in th range of 13~78kW/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\p$\pm$5% and\;\pm20$% respectively.

  • PDF

Piezoelectric and strain characteristics of PMN-PT-PZ ceramics with Ba addition (Ba치환된 $Pb(Mg_{1/3}Nb_{2/3})O_3$-$PbTiO_3$-$PbZrO_3$계 세라믹스의 압전 및 변위특성에 관한 연구)

  • 지승한;이덕출;이능헌
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 1997
  • In this study, piezoelectric actuator samples were fabricated using 0.375PMN-0.37OPT-0.255PZ system ceramics with Barium substitution and the strain properties of them were investigated. Dielectric constant of the specimens increased with the increase of Ba content up to 5mol% and decreased with futher addition of Ba. The largest piezoelectric coefficient and electromechanical coupling coefficient were observed at the sintering temperature of 1250'C and Barium content of 5mol%. The characteristics of strain hysteresis was found largely with varing the sintering temperature on the single round type, and the strain is proportional to piezoelectric coefficient.

  • PDF

Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine (선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용)

  • Kim, Han-Sang;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.