• 제목/요약/키워드: Coupled-Field Analysis

검색결과 526건 처리시간 0.024초

개폐 시 최소 간섭을 갖는 버터플라이 밸브 디스크의 설계 (Design of Butterfly Valve Disk to Minimize Interference at Opening and Closing)

  • 최영;부광석;여홍태;허관도;김호관
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.140-145
    • /
    • 2004
  • In this study, the design and analysis of a butterfly valve disk was performed to minimize the rubbing between the disk and the seat at opening and closing. The butterfly valve has double eccentric structure and the contact surface between the disk and the seat is a conical surface. At the instant of opening and closing the valve by the rotation of disk, the positions of zero contact point are changed. Also, if the cone surface is cut in the perpendicular direction to the rotation axis of the valve, the contour of cutting section is hyperbolic. Therefore minimum distance between the origin of the eccentric axis and the hyperbolic curve goes to the position of zero contact point. In order to consider the interferences between the disk and the seat, the thermal-structure coupled field analysis was performed by ANSYS.

정전기력을 이용한 미소기전 구동기의 고유치 변화 해석에 관한 연구 (Numerical Approach for Frequency-Shifting Analysis of Electrostatic Micro-Mechanial Actuator)

  • 이완술;권기찬;김봉규;조지현;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.854-859
    • /
    • 2001
  • An eigenvalue analysis of a tunable micro-mechanical actuator is presented. The actuator is modeled as a continuum structure. The eigenvalue modified by the tuning voltage is computed through the linearization of the relation between the electrostatic force and the displacement at the equilibrium. A staggered algorithm is employed to perform the coupled analysis of the electrostatic and elastic fields. The stiffness matrix of the actuator is modified at this equilibrium state. The displacement field is perturbed using an eigenmode profile of the actuator. The configuration change of the actuator due to perturbation modifies the electrostatic field and thus the electrostatic force. The equivalent stiffness matrix corresponding to the perturbation and the change in the electrostatic force is then added to stiffness matrix in order to explain natural frequency shifting. The numerical examples are presented and compared with the experiments in the literatures.

  • PDF

지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석 (Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity)

  • 김민규;임윤묵;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Coupled electro-elastic analysis of functionally graded piezoelectric material plates

  • Wu, Chih-Ping;Ding, Shuang
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.781-806
    • /
    • 2015
  • A unified formulation of finite layer methods (FLMs), based on the Reissner mixed variational theorem (RMVT), is developed for the three-dimensional (3D) coupled electro-elastic analysis of simply-supported, functionally graded piezoelectric material (FGPM) plates with open- and closed-circuit surface conditions and under electro-mechanical loads. In this formulation, the material properties of the plate are assumed to obey an exponent-law varying exponentially through the thickness coordinate, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the primary field variables of each individual layer, respectively, such as the elastic displacement, transverse shear and normal stress, electric potential, and normal electric displacement components. The relevant orders used for expanding these variables in the thickness coordinate can be freely chosen as the linear, quadratic and cubic orders. Four different mechanical/electrical loading conditions applied on the top and bottom surfaces of the plate are considered, and the corresponding coupled electro-elastic analysis of the loaded FGPM plates is undertaken. The accuracy and convergence rate of the RMVT-based FLMs are assessed by comparing their solutions with the exact 3D piezoelectricity ones available in the literature.

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

광디스크용 4-wire 액츄에이터의 연성효과에 관한 해석 (Analysis of coupled effect for 4-wire actuator of optical disc)

  • 한창수;서현석;이정현;원종화;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.351-355
    • /
    • 1996
  • In optical disc system, lens actuator of 4-wire has unwanted moment which occurs tilt. The moment around the axis pallet to the tangential direction of the disk occurs to the moving part. when the moving part is moved in tracking direction and focus driving force is applied. This paper analyzed coupled effect due to the moment based on structural analysis and magnetic field analysis, both using finite element method.

  • PDF

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Review of researches on coupled system and CFD codes

  • Long, Jianping;Zhang, Bin;Yang, Bao-Wen;Wang, Sipeng
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2775-2787
    • /
    • 2021
  • At present, most of the widely used system codes for nuclear safety analysis are one-dimensional, which cannot effectively simulate the flow field of the reactor core or other structures. This is true even for the system codes containing three-dimensional modules with limited three-dimensional simulation function such as RELAP-3D. In contrast, the computational fluid dynamics (CFD) codes excel at providing a detailed three-dimensional flow field of the reactor core or other components; however, the computational domain is relatively small and results in the very high computing resource consuming. Therefore, the development of coupling codes, which can make comprehensive use of the advantages of system and CFD codes, has become a research focus. In this paper, a review focus on the researches of coupled CFD and thermal-hydraulic system codes was carried out, which summarized the method of coupling, the data transfer processing between CFD and system codes, and the verification and validation (V&V) of coupled codes. Furthermore, a series of problems associated with the coupling procedure have been identified, which provide the general direction for the development and V&V efforts of coupled codes.

Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating

  • Othman, Mohamed I.A.;Fekry, Montaser;Marin, Marin
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.621-629
    • /
    • 2020
  • The present paper aims to study the influence of the magnetic field and initial stress on the 2-D problem of generalized thermo-viscoelastic material with voids subject to thermal loading by a laser pulse in the context of the Lord-Shulman and the classical dynamical coupled theories. The analytical expressions for the physical quantities are obtained in the physical domain by using the normal mode analysis. These expressions are calculated numerically for a specific material and explained graphically. Comparisons are made with the results predicted by the Lord-Shulman and the coupled theories in the presence and absence of the initial stress and the magnetic field.

부하의 전압특성을 고려한 3상 2회선 불평형 송전선로에서의 전자계에 대한 퍼지척도 가능성평가 (Assessment of Fuzzy Measure Possibility for the Electromagnetic Field of unbalanced two coupled Three-phase Transmission line Considering toad-Voltage Characteristics)

  • 송현선;김상철
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.45-52
    • /
    • 2001
  • This paper presents a study on the assessment of fuzzy measure possibility for the electromagnetic field of unbalanced system. It takes into account m untransposed transmission line and unbalanced load. A three phase load flow program was developed which employs a Newton-Raphson method as a tool to analyze system unbalanced. This research presents a method of handling two coupled three phase transmission system unbalance analysis and unbalanced power demand as a function of voltages. In assessment of fuzzy measure possibility for the electromagnetic field, this paper use probability of fuzzy and measure of fuzziness technique.

  • PDF