• Title/Summary/Keyword: Coupled inductor

Search Result 199, Processing Time 0.035 seconds

A Study on the LLC Resonant Converter for Multi-Output LED Driver with Coupled Inductor (Coupled Inductor를 적용한 다중 출력 LED 조명용 LLC 공진 컨버터에 관한 연구)

  • Park, Sang-Beom;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.64-66
    • /
    • 2020
  • 친환경적이고 수명이 길며 높은 효율을 가지고 있는 LED(Light Emitting Diode) 조명은 각광 받고 있다. LED는 응용 분야별로 필요한 용량에 따라 다양하게 정하지 않고 용량을 한가지로 표준화하여 직, 병렬로 연결하여 모듈 형태로 사용하고 큰 용량이 필요한 경우, 여러 개의 모듈로 이용하는 특징을 갖는다. 따라서 LED 구동하기 위한 컨버터는 LED 모듈을 최소 하나에서 여러 대를 구동할 수 있는 PFC 및 DC/DC 컨버터를 요구한다. 기존 단일 출력 컨버터로 LED 모듈을 구성하면 LED 시스템의 높은 효율, 높은 전력 밀도, 대용량화 및 활용도가 떨어지며 효과적으로 유지 보수가 어렵다는 문제점이 있다. 또한, 다중 출력 LED 컨버터는 각 출력이 정전류 특성을 유지하고 LED 보호 기능을 가지려면 독립적인 컨버터가 채널마다 필요하게 된다. 이에 본 논문은 다중 출력으로 복수의 LED 모듈을 문제없이 구동할 수 있는 LLC 공진 컨버터에 관한 연구이며 이를 시뮬레이션을 통해 확인하였다.

  • PDF

Zero-Voltage and Zero-Current Switching Interleaved Two-Switch Forward Converter

  • Chu, Enhui;Bao, Jianqun;Song, Qi;Zhang, Yang;Xie, Haolin;Chen, Zhifang;Zhou, Yue
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1413-1428
    • /
    • 2019
  • In this paper, a novel zero-voltage and zero-current switching (ZVZCS) interleaved two switch forward converter is proposed. By using a coupled-inductor-type smoothing filter, a snubber capacitor, the parallel capacitance of the leading switches and the transformer parasitic inductance, the proposed converter can realize soft-switching for the main power switches. This converter can effectively reduce the primary circulating current loss by using the coupled inductor and the snubber capacitor. Furthermore, this converter can reduce the reverse recovery loss, parasitic ringing and transient voltage stress in the secondary rectifier diodes caused by the leakage inductors of the transformer and the coupled inductance. The operation principle and steady state characteristics of the converter are analyzed according to the equivalent circuits in different operation modes. The practical effectiveness of the proposed converter was is illustrated by simulation and experimental results via a 500W, 100 kHz prototype using the power MOSFET.

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.

The high Efficiency Ballast for MHD Lamp with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.356-362
    • /
    • 2005
  • In this paper, in order to develop a simple and high efficient ballast without an external ignitor, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The Internal LC resonance of the buck converter is used to generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and trun off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about 4$\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified nth hardware experiments.

Derivation of Transfer Function for the Cross-Coupled Filter Systems Using Chain Matrices

  • Um, Kee-Hong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2018
  • In this paper, we derive a transfer function of cross-coupled microwave filter systems by using a characteristics of chain matrices. Depending on the lumped element of capacitor or inductor, the cross-coupled system is negatively- or positively system. We used a ladder network as a starting system composed of several subsystems connected in chain. Each subsystem is descrived by Laplace impedance. By solving the transmission zero characteristic equation derived from the cascaded subsystems, we can find the zeros of filter system with externally cross-coupled lumped elements. With the cross-coupled elements of capacitors, the numerator polynomial of system transfer function is used to locate the quadruplet zeros in complex plane. We show the polynomoials of numerator and denominator of cascaded transfer function, obtaining the zeros of the cross-coupled system.

A Cross Regulation Analysis for Single-Inductor Dual-Output CCM Buck Converters

  • Wang, Yao;Xu, Jianping;Zhou, Guohua
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1802-1812
    • /
    • 2016
  • Cross regulation is a key technical issue of single-inductor multiple-output (SIMO) DC-DC converters. This paper investigates the cross regulation in single-inductor dual-output (SIDO) Buck converters with continuous conduction mode (CCM) operation. The expressions of the DC voltage gain, control to the output transfer function, cross regulation transfer function, cross coupled transfer function and impedance transfer function of the converter are presented by the time averaging equivalent circuit approach. A small signal model of a SIDO CCM Buck converter is built to analyze this cross regulation. The laws of cross regulation with respect to various load conditions are investigated. Simulation and experiment results verify the theoretical analysis. This study will be helpful for converter design to reduce the cross regulation. In addition, a control strategy to reduce cross regulation is performed.

Fast-Response Load Regulation of DC-DC Converter By High-Current Clamp

  • Senanayake, Thilak Ananda;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 2004
  • A new fast-response high-current clamp DC-DC converter circuit design is presented that will meet the requirements and features of the new generation of microprocessors and digital systems. The clamp in the proposed converter amplifies the current in case of severe load changes and is able to produce high slew rate of output current and capability to keep constant the output voltage. This proposed high-current clamp technique is theoretically loss less, low cost and easy to implement with simple control scheme. This is modified from a basic buck topology by replacing the output inductor with two magnetically coupled inductors. Inductors are difference in inductance, one has large inductance and other has small inductance. The inductor with small inductance will take over the output inductor during fast load transient. It speedup the output current slew rate and reduce the output voltage drop in the case of heavy burden load changes.

Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery Systems

  • Li, Yan;Zheng, Trillion Q.;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.432-443
    • /
    • 2014
  • In order to improve the output efficiency of solar cells and to extend the life span of batteries, the input currents of converters are required to be continuous. If low output voltage ripple is required at the same time, it is obvious that the application of basic two-order converters (such as Buck and Boost derived converters) will not be good enough. In this paper, a lot of non-isolated push-pull converters (NIPPCs) with continuous current will be introduced due to their lower current stress, higher efficiency and better EMC performance. By decomposing the converters into push-pull cells, inductor and free-wheeling diodes, two families of NIPPCs based on single inductor and coupled inductor separately are systematically generated. Furthermore, characteristics analyses for some of the generated converters are also shown in this paper. Finally, two prototypes based on the corresponding typical topologies are built in the lab to verify the theoretical outcomes.

High Efficiency Lossless Snubber for Photovoltaic Maximum Power Point Tracker (태양광 최대 전력 추종기를 위한 고효율 무손실 스너버)

  • Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.485-491
    • /
    • 2013
  • A new passive lossless snubber for boost converter based on magnetic coupling is proposed. It is composed of a winding coupled with boost inductor, one snubber inductor, two snubber capacitor and three additional diodes. Especially, the snubber inductor can not only limit the reverse recovery current of output diode but also minimize switch turn-on losses greatly. Moreover, all of the energy stored in the snubber is transferred to the load in the manner of resonance. To confirm the validity of proposed system, theoretical analysis, design consideration, and verification of experimental results are presented.