• 제목/요약/키워드: Coupled equations of motion

검색결과 247건 처리시간 0.026초

스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석 (Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

전자기장과 열하중을 받는 복합재료 평판의 압전제어에 따른 동특성 변화 (Variation of Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields via Piezoelectric Control)

  • 박상윤;송오섭
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.379-387
    • /
    • 2016
  • 본 논문에서 전자기장과 열 하중을 받는 복합재료 평판에 대하여 압전재료를 이용한 압전제어를 수행하였다. 구조물에 가해지는 전자기장과 열 하중, 그리고 구성방정식에서 고려되는 압전효과가 모두 포함된 지배방정식을 FSDT 판 이론에 기초하여 Hamilton 원리에 의하여 유도하였다. 평판의 경계면에서 발생하는 제어력과 제어 모멘트는 비례제어 및 속도제어 로직에 의하여 적용되었다. 전자기장과 열 하중, 그리고 압전효과가 복합재료 평판의 동특성에 미치는 영향에 대하여 고찰하고, 압전효과 및 복합재료의 섬유각 변화를 통하여 복합재 구조물의 동특성을 효과적으로 제어 가능함을 확인하였다.

Fourier 급수전걔를 이용한 부분적으로 유체가 채워진 원통형 셸의 고유진동 해석 (Fourier Series Expansion Method for Free Vibration Analysis of a Partially Liquid-Filled Circular Cylindrical Shell)

  • 정경훈;이성철
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.163-175
    • /
    • 1994
  • An analytical method for nautral frequencies of a partially liquid- filled circular cylindrical shell with various boundary conditions is developed by means of the Stokes's transformation and Fourier series expansion on the basis of Sanders' shell equation. The liquid-shell coupled system is divided into two regions for convenient formulation. One is the empty shell region in which the Sanders' shell equations are formulated without the lipuid effect, the other is wetted shell region in which the shell equations are formulated with consideration of the liquid dynamic effect. The shell equations for each regions are combined by the geometry and the force continuities at the junction of the two regions. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in axial direction. The unknown parameters are selected to satisfy the boundary condition along the wetted shell surface. The natural frequencies of the liquid filled cylindraical shells with the clamped- free and the clamped-clamped boundary conditions examined in the previous works, are obtained by this analytical method. The results are compared with the previous works, and excllent agreement is found for the natural frequencies of the shells.

  • PDF

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • 제1권1호
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증 (Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200)

  • 박성국;이필엽;박상웅;권순태;정훈상;박민수
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.

가공 오차를 고려한 스핀들 시스템의 동적 특성 해석 (Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance)

  • 곽규열;김학운;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

혼합경계의 부분구조 모드를 이용한 구조물의 모드해석 (Structural Modal Analysis Using Substructure Hybrid Interface Modes)

  • 김형근;박윤식
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1138-1149
    • /
    • 1993
  • 본 연구에서는 임의 형태의 경계조건을 갖는 부분구조 모드를 이용하여 구조물의 고유치해석을 수행할 수 있는 새로운 혼합경계합성법을 제시한다. 각 부분 구조의 모드특성으로는 기존의 고정, 자유, 그리고 하중경계모드가 모두 사용될 수 있으며 고정 및 하중경계모드를 사용한 경우에는 두번의 연속적인 모드변환식이 사용 된다. 부분구조간의 연결부에서 정의되는 경계자유도만을 이용하여 고유치해석을 수행하며 고유치해석의 최종적인 특성방정식은 경계자유도의 갯수와 같은 연립방정식 에서 비롯되는 다항식이 된다. 제시한 방법은 유한요소법 뿐만 아니라 실험적 모드 해석을 통해 모형화된 부분구조를 쉽게 고려할 수 있는 장점이 있다. 제시한 방법을 간단한 집중질량계에 적용하여 부분구조모드의 특성과 수렴성 및 최적의 부분구조 모 드의 조합이 존재함을 보인다.

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권4호
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션 (Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves)

  • 윤현규;이경중;이창민
    • 한국항해항만학회지
    • /
    • 제28권5호
    • /
    • pp.347-352
    • /
    • 2004
  • 파도에 의한 힘과 모멘트는 운항하는 선박에 운동을 발생시킨다. 이러한 운동은 승무원의 작업 능률 저하, 화물의 안전 및 승선감 등에 영향을 주게 되어 안전 운항 저해 요소가 되므로 파도에 의학 운동이 큰 선박들은 자세제어장비(anti-rolling devices)의 장착이 요구된다. 본 연구에서는 수 능동의 이동질량안정기(moving weight stabilizer), 감요탱크(anti-rolling tank), 핀스태빌라이저(fin stabilizer)와 같은 자세제어장비의 동적 거동을 수학적으로 모델링 하였다 기존에는 자세제어장비의 운동을 선박의 횡동요에만 고려한 반면, 본 연구에서는 선박의 6자유도 운동을 모두 고려하여 복합운동방정식을 정립하였다. 마지막으로 자세제어장비를 장착한 선박의 파중 운동 계산 프로그램을 작성하여 시뮬레이션을 수행하였다.