• Title/Summary/Keyword: Coupled Model

Search Result 2,682, Processing Time 0.026 seconds

Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2 and Purified H2 Production in a Water Gas Shift Reaction

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.425-432
    • /
    • 2014
  • The effect of two important parameters of a catalytic membrane reactor (CMR), hydrogen selectivity and hydrogen permeance, coupled with an Ar sweep flow and an operating pressure on the performance of a water gas shift reaction in a CMR has been extensively studied using a one-dimensional reactor model and reaction kinetics. As an alternative pre-combustion $CO_2$ capture method, the feasibility of capturing a pressurized and concentrated $CO_2$ in a retentate (a shell side of a CMR) and separating a purified $H_2$ in a permeate (a tube side of a CMR) simultaneously in a CMR was examined and a guideline for a hydrogen permeance, a hydrogen selectivity, an Ar sweep flow rate, and an operating pressure to achieve a simultaneous capture of a concentrate $CO_2$ in a retentate and production of a purified $H_2$ in a permeate is presented. For example, with an operating pressure of 8 atm and Ar sweep gas for rate of $6.7{\times}10^{-4}mols^{-1}$, a concentrated $CO_2$ in a retentate (~90%) and a purified $H_2$ in a permeate (~100%) was simultaneously obtained in a CMR fitted with a membrane with hydrogen permeance of $1{\times}10^{-8}molm^{-2}s^{-1}Pa^{-1}$ and a hydrogen selectivity of 10000.

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists (CRF1 길항제 스크리닝을 위한 에쿼린 기반 세포실험 개발연구)

  • Noh, Hyojin;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7575-7581
    • /
    • 2015
  • Corticotropin-releasing factor(CRF), one of the stress driven neuropeptides, was widely proposed to influence hair loss and re-growth. For the development of receptor antagonists, the screening system based on intracellular calcium signal process was developed and optimized. The aequorin parental cells were transfected with CRF1 receptor and alpha 16 promiscuous G protein cDNA to establish HEK293a16/hCRF1, a stable cell line for the human CRF1 receptor. In HEK293a16/hCRF1 cells, the range of sauvagine dose response was 12-fold higher($EC_{50}:15.21{\pm}1.83nM$) than in the transiently expressed cells, hence essential conditions for the antagonist screening experiments such as the robust signals and high solvent tolerance were secured. The standard antagonists for the CRF1 receptor, antalarmin and CP154526, resulted $IC_{50}$ values of $414.1{\pm}5.5$ and $290.7{\pm}1.9nM$, respectively. Similar results were presented with frozen HEK293a16/hCRF1 cells. Finally, our HEK293a16/hCRF1 cells with the aequorin based cellular functional assay can be a model system for the development of functional cosmetics and modulators that can have a clinical efficacy on hair re-growth.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

In Vitro and in Vivo Wound Healing Properties of Plasma and Serum from Crocodylus siamensis Blood

  • Jangpromma, Nisachon;Preecharram, Sutthidech;Srilert, Thanawan;Maijaroen, Surachai;Mahakunakorn, Pramote;Nualkaew, Natsajee;Daduang, Sakda;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1140-1147
    • /
    • 2016
  • The plasma and serum of Crocodylus siamensis have previously been reported to exhibit potent antimicrobial, antioxidant, and anti-inflammatory activities. During wound healing, these biological properties play a crucial role for supporting the formation of new tissue around the injured skin in the recovery process. Thus, this study aimed to evaluate the wound healing properties of C. siamensis plasma and serum. The collected data demonstrate that crocodile plasma and serum were able to activate in vitro proliferation and migration of HaCaT, a human keratinocyte cell line, which represents an essential phase in the wound healing process. With respect to investigating cell migration, a scratch wound experiment was performed which revealed the ability of plasma and serum to decrease the gap of wounds in a dose-dependent manner. Consistent with the in vitro results, remarkably enhanced wound repair was also observed in a mouse excisional skin wound model after treatment with plasma or serum. The effects of C. siamensis plasma and serum on wound healing were further elucidated by treating wound infections by Staphylococcus aureus ATCC 25923 on mice skin coupled with a histological method. The results indicate that crocodile plasma and serum promote the prevention of wound infection and boost the re-epithelialization necessary for the formation of new skin. Therefore, this work represents the first study to demonstrate the efficiency of C. siamensis plasma and serum with respect to their wound healing properties and strongly supports the utilization of C. siamensis plasma and serum as therapeutic products for injured skin treatment.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Calculation of the Electromagnetic Wave Ields Near Electric Power Lines (전력선로 근방의 전자파 전자계 계산)

  • Kang, Dae-Ha;Lee, Young-Sik;Park, Jung-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • In this study electromagnetic fields near electric power lines were derived by dipole antenna theory and electromagnetic fields near 3 phase power lines with vertical configurations were formulated and could be computed easily using these formula. It seems that those formula could be applicable to the consideration of electromagnetic fields during the design of transmission and distribution lines. Those formulated equations on elements of electromagnetic fields were applied to the model of a transmission-line system and were calculated by Matlab programs. The calculation results are follows. For variation of horizontal distance profiles of $E_y$ and $B_z$ are same each other, and also those of $B_y$ and $E_z$ are same each other. This means that coupled elements of E and B are perpendicular each other and have the propagation direction of the right-hand system such as $x{\rightarrow}E_y{\rightarrow}B_z$. Resultant electric field E is dominated by the element $E_y$ and resultant magnetic field B is dominated by the element $B_z$.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.

Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression

  • Zhou, Da;Chen, Yuan-Wen;Zhao, Ze-Hua;Yang, Rui-Xu;Xin, Feng-Zhi;Liu, Xiao-Lin;Pan, Qin;Zhou, Huiping;Fan, Jian-Gao
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.2.1-2.12
    • /
    • 2018
  • Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.