• Title/Summary/Keyword: Coupled Lateral and Torsional Vibration

Search Result 26, Processing Time 0.026 seconds

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect (기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성)

  • Lee, An-Sung;Ha, Jin-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System (증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석)

  • 이안성;하진웅;최동훈
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF

Wind-induced lateral-torsional coupled responses of tall buildings

  • Wu, J.R.;Li, Q.S.;Tuan, Alex Y.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.153-178
    • /
    • 2008
  • Based on the empirical formulas for power spectra of generalized modal forces and local fluctuating wind forces in across-wind and torsional directions, the wind-induced lateral-torsional coupled response analysis of a representative rectangular tall building was conducted by setting various parameters such as eccentricities in centers of mass and/or rigidity and considering different torsional to lateral stiffness ratios. The eccentricity effects on the lateral-torsional coupled responses of the tall building were studied comprehensively by structural dynamic analysis. Extensive computational results indicated that the torsional responses at the geometric center of the building may be significantly affected by the eccentricities in the centers of mass and/or rigidity. Covariance responses were found to be in the same order of magnitude as the along-wind or across-wind responses in many eccentricity cases, suggesting that the lateral-torsional coupled effects on the overall wind-induced responses can not be neglected for such situations. The calculated results also demonstrated that the torsional motion contributed significantly to the total responses of rectangular tall buildings with mass and/or rigidity eccentricities. It was shown through this study that the framework presented in this paper provides a useful tool to evaluate the wind-induced lateral-torsional coupled responses of rectangular buildings, which will enable structural engineers in the preliminary design stages to assess the serviceability of tall buildings, potential structural vibration problems and the need for a detailed wind tunnel test.

Vibration Analysis of Geared Rotor System (기어전동 회전축계의 진동해석)

  • Kim, K.D.;Kim, Y.H.;Yang, B.S.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • As the speed of rotating machines increases and also their weight decreases, the coupling between lateral and torsional vibrations must be considered. In the past, rotordynamics and geardynamics have tended to treat the lateral and torsional vibrations of the system elements as separate and decoupled mechanisms. In the paper, the coupled lateral-torsional free and forced vibration of rotors trained by gears is analyzed using finite element method. Also the complicated variation of the meshing stiffness as a function of contact point along the line of action is estimated correctly. The gear mesh model is assumed to be linear with constant average mesh stiffness.

  • PDF

Tuned mass dampers for torsionally coupled systems

  • Pansare, A.P.;Jangid, R.S.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.23-40
    • /
    • 2003
  • The steady state response of a torsionally coupled system with tuned mass dampers (TMDs) to external wind-induced harmonic excitation is presented. The torsionally coupled system is considered as one-way eccentric system. The eccentricity considered in the system is accidental eccentricity only. The performance of single tuned mass damper (TMD) optimally designed without considering the torsion is investigated for the torsionally coupled system and found that the effectiveness of a single TMD is significantly reduced due to torsion in the system. However, the design of TMD system without considering the torsion is only justified for torsionally stiff systems. Further, the optimum parameters of a single TMD considering the accidental eccentricity are obtained using numerical searching technique for different values of uncoupled torsional to lateral frequency ratio and aspect ratio of the system. The optimally designed single TMD system is found to be less effective for torsionally coupled system in comparison to uncoupled system. This is due to the fact that a torsionally coupled system has two natural frequencies of vibration, as a result, at least two TMDs are required which can control both lateral and torsional response of the system. The optimum damper parameters of different alternate arrangements such as (i) two identical TMDs placed at opposite corners, (ii) two independent TMDs and (iii) four TMDs are evaluated for minimum response of the system. The comparative performance of the above TMDs arrangements is also studied for both torsionally coupled and uncoupled systems. It is found that four TMDs arrangement is quite effective solution for vibration control of torsionally coupled system.

A Mathematical Approach for Analysis of Modes in Pickup Actuators (운동방정식에 의한 픽업 액추에이터 모드 분석)

  • Lee, Kyung Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.73-78
    • /
    • 2013
  • In this paper, the vibration for a pickup actuator is described by mathematically analyzing its suspension configuration and motion, confined to lateral and torsional directions of suspensions. In order to prove the accuracy of this result, it is compared to a finite element analysis. Also it is shown that modal frequencies can be modified by changing design parameters in mathematical motion expressions.

  • PDF

Control of Coupled Lateral Torsional Vibration of Tall Building under Dynamic Lateral Loads (동적 하중을 받는 횡-비틀림 방향이 조합된 고층건물의 진동 제어에 관한 연구)

  • 황재승;민경원;홍성목
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.28-33
    • /
    • 1995
  • 본 논문에서는 조합변형이 각각의 모드에 따라 매우 다양하게 달라질 수 있으며 각 모드의 역학적 거동에 따라 제어기의 최적 위치가 달라지는 것을 보였으며 이러한 최적의 위치를 효과적으로 파악할 수 있는 각 모드의 기하학적인 중심에 대하여 기술하였다.

  • PDF

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.