• Title/Summary/Keyword: Coupled Code

검색결과 404건 처리시간 0.026초

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Model Development for the Nitrification-Denitrification Coupled Process

  • Lee, Mee-Sun;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.195-198
    • /
    • 2002
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code (Clement, 1997) describing the fate and transport nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed. The proposed nitrogen transformations and transport model showed very good match with results of a conceptual model. However, the model simulation results for the major reactive species should be tested for validation using experimental and field data.

  • PDF

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

Floating offshore wind turbine system simulation

  • ;박현철;정진화;김창완;김영찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF

능력설계에 의한 RC 연결전단벽 구조의 내진설계 (Application of Capacity Design Methodology to RC Coupled Shear Wall)

  • 이한선;정성욱;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.295-298
    • /
    • 2005
  • Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19$\%$ and 17$\%$, respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state.

  • PDF

성능기반 구조내화설계를 위한 단방향 연성해석 사용자가이드 조사에 관한 연구 (A Study on the Investigation of Users Guide of One-Way Coupled Analysis for Performance-Based Structural Fire Resistance Design)

  • 권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.96-97
    • /
    • 2021
  • In the Building Act, performance-based fire safety design is being promoted for institutionalization. The behavior of the structure against fire conditions can be predicted by using the advanced numerical analysis method based on the FEM (Finite Element Method) to predict the entire structural behavior including the behavior of the structure, but there is a limit to expressing the fire properties of the space and predicting the fire properties It is difficult to determine the variables to be transmitted to the FEM (Finite Element Method) model from the fire simulation results using FDS (Fire Dynamics Simulator). Accordingly, the purpose of this study is to introduce the code user's manual for FDS and FEM unidirectional coupling analysis.

  • PDF

형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션 (Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector)

  • 강상식;김소영;신정욱;허승욱;김재형;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

익형의 층류박리를 동반한 천이 유동 해석 (COMPUTATION OF TRANSITION FLOW WITH LAMINAR SEPARATION BUBBLE OVER AN AIRFOIL)

  • 전상언;박수형;김상호;변영환;이재우;정경진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.60-64
    • /
    • 2009
  • Laminar separation bubble and transitional flow over an airfoil are investigated at a moderate range of Reynolds numbers. In this research, a Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for NACA0012 airfoil. Results of transition onset point and length are compared well with experimental and XFOIL prediction. In high angle of attack the present RANS results show better agreement than XFOIL results using the boundary layer equations.

  • PDF

Study on Characteristics of Subchannel Analysis Code at Low Flow Steam Line Break Condition

  • Kwon, Hyuk-Sung;Lim, Jong-Seon;Hwang, Dae-Hyun;Chun, Tae-Hyun;Park, Jong-Ryul
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.403-408
    • /
    • 1996
  • The subchannel analysis was performed to verify the behavior of hot channel characteristics and obtain the information to support the core thermal-hydraulic behavior at post-trip steam line break with low flow condition. During this postulated accident, buoyancy-induced cross flow occurs, and the coupled nuclear and thermal-hydraulic interactions become important. The code predictions with TORC are in good agreement with the test data. Under such conditions, the mass flow increase in the hot channel by buoyancy-induced cross flow depends on the parameter $GR^{*}\;/\;Re^2$, and buoyancy effect becomes more noticeable as $GR^{*}\;/\;Re^2$ increases.

  • PDF