• Title/Summary/Keyword: Counting Number

Search Result 528, Processing Time 0.024 seconds

people counting system using single camera (카메라영상을 이용한 people counting system)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Baek, Young-Min;Kim, Soo-Wan;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.172-174
    • /
    • 2009
  • This paper describes an implementation method for the 'People Counting System' which detects and tracks moving people using a fixed single camera. This system proposes the method of improving performances by compensating weakness of existing algorithm. For increasing effect of detection, this system uses Single Gaussian Background Modeling which is more robust at noise and has adaptiveness. It minimizes unnecessarily detected area that is a limitation of the detecting method by using the background differences. And this system prevents additional detecting problems by removing shadow. Also, This system solves the problems of segmentation and union of people by using a new method. This method can work appropriately, if the angle of camera would not strictly vertical or the direction of shadow were lopsided. Also, by using integration System, it can solve a number of special cases as many as possible. For example, if the system fails to tracking, it will detect the object again and will make it possible to count moving people.

  • PDF

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Comparison on the Quality and fatigue of hands-Only CPR According to the Presence or Absence of Verbal counting by Some Middle-aged Women (일부 중년 여성에서 구령 유무에 따른 가슴압박소생술의 질과 피로도 비교)

  • Kim, Geon-Nam;Choi, Sung-Soo;Choi, Seong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1320-1329
    • /
    • 2013
  • According to the comparing the quality and fatigue of Hands-only CPR with counting by middle-aged women who is most likely to witness the cardiac arrest. This paper wants to provide the basic data to establish a CPR education program for the role of the first responders. After conducted three hours of basic life support training, it divided into two 45-persons groups by assignment of probability. 2-minutes research conducted with dummy by dividing into Group-A that counting the number loudly during the Hands-Only CPR, And Group-B that does not counting the number during the Hands-Only CPR. Between the two groups, the quality of Hands-Only CPR does not showed its difference clearly and the downtime of Hands-Only CPR was reduced, Depending on the over time, the frequency that reduces the depth of Hands-Only CPR was also significantly lower. And after the Hands-Only CPR, the fatigability who felt themselves was also significantly lower.

A Structural Isomorphism between Problems Counting the Number of Combinations (조합문제 사이의 구조적 동형)

  • Lee Ju-Young;Kim Suh-Ryung;Park Hye-Sook;Kim Wan-Soon
    • The Mathematical Education
    • /
    • v.45 no.1 s.112
    • /
    • pp.123-138
    • /
    • 2006
  • In this paper, we confirm through surveys and interviews that it helps students in solving a problem counting the number of combinations to find a structural isomorphism between the given problem and a typical problem with the same mathematical structure. Then we suggest that a problem of distributing balls into boxes might be a good candidate for a typical problem. This approach is coherent to the viewpoint given by English(2004) that it is educationally important to see the connection and relationship between problems with different context but with similar mathematical structure.

  • PDF

Analysis of Pedestrian Pattern for Pedestrian Counting Systems (통행량 분석을 위한 보행자 패턴 추출 시스템)

  • Kang, You Hyun;Kwon, Miso;Han, Hee Jeong;Cho, Dong Sub
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.640-641
    • /
    • 2016
  • There are a number of reported papers about detection and tracking of pedestrian for urban design. While related studies have not dealt with various environmental situations, this paper proposes a pedestrian counting system using pedestrian pattern for overcoming technical limitations. The Pedestrian Algorithm uses four steps to count the number of pedestrians for analyzing the pedestrian pattern according to the characteristics of the foot patterns of pedestrians.

BOOLEAN GEOMETRY (3)

  • Kim, Chang-Bum
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.349-356
    • /
    • 1998
  • We give the new formulas counting the total number of all lines planes and tetrahedrons in the n-dimensional Boolean space.

Learning-Based People Counting System Using an IR-UWB Radar Sensor (IR-UWB 레이다 센서를 이용한 학습 기반 인원 계수 추정 시스템)

  • Choi, Jae-Ho;Kim, Ji-Eun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • In this paper, we propose a real-time system for counting people. The proposed system uses an impulse radio ultra-wideband(IR-UWB) radar to estimate the number of people in a given location. The proposed system uses learning-based classification methods to count people more accurately. In other words, a feature vector database is constructed by exploiting the pattern of reflected signals, which depends on the number of people. Subsequently, a classifier is trained using this database. When a newly received signal data is acquired, the system automatically counts people using the pre-trained classifier. We validated the effectiveness of the proposed algorithm by presenting the results of real-time estimation of the number of people changing from 0 to 10 in an indoor environment.

A Deep Learning Based Device-free Indoor People Counting Using CSI (CSI를 활용한 딥러닝 기반의 실내 사람 수 추정 기법)

  • An, Hyun-seong;Kim, Seungku
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.935-941
    • /
    • 2020
  • People estimation is important to provide IoT services. Most people counting technologies use camera or sensor data. However, the conventional technologies have the disadvantages of invasion of privacy and the need to install extra infrastructure. This paper proposes a method for estimating the number of people using a Wi-Fi AP. We use channel state information of Wi-Fi and analyze that using deep learning technology. It can be achieved by pre-installed Wi-Fi infrastructure that reduce cost for people estimation and privacy infringement. The proposed algorithm uses a k-binding data for pre-processing process and a 1D-CNN learning model. Two APs were installed to analyze the estimation results of six people. The result of the accurate number estimation was 64.8%, but the result of classifying the number of people into classes showed a high result of 84.5%. This algorithm is expected to be applicable to estimate the density of people in a small space.

An Analysis of Wi-Fi Probe Request for Crowd Counting through MAC-Address classification (MAC-Address 분류를 통한 Wi-Fi Probe Request 기반 유동인구 분석 방법)

  • Oppokhonov, Shokirkhon;Lee, Jae-Hyun;Moon, Jun-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.612-623
    • /
    • 2022
  • Estimation of the presence of people in real time is extremely useful for businesses in providing better services. Many companies and researchers have attempted various researches in order to count the number of floating population in a specific space. Recently, as part of smart cities and digital twins, commercialization of measuring floating populations using Wi-Fi signals has become active in the public and private sectors. In this paper we present a method of estimating the floating population based on MAC-address values collected from smartphones. By distinguishing Real MAC-address and Random MAC-address values, we compare the estimated number of smartphone devices and the actual number of people caught on CCTV screens to evaluate the accuracy of the proposed method. And it appeared to have a similar correlation between the two datas. As a result, we present a method of estimating the floating population based on analyzing Wi-Fi Probe Requests.

Why abandon Randomized MAC-Address : An Analysis of Wi-Fi Probe Request for Crowd Counting (Why abandon Randomized MAC-Address : Wi-Fi Probe Request 기반 유동인구 분석 방법)

  • Oppokhonov, Shokirkhon;Lee, Jae-Hyun;Moon, Jun-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.24-34
    • /
    • 2021
  • Estimation of the presence of people in real time is extremely useful for businesses in providing better services. Many companies and researchers have attempted various researches in order to count the number of floating population in specific space. Recently, as part of smart cities and digital twins, commercialization of measuring floating populations using Wi-Fi signals has become active in the public and private sectors. This paper explains the floating population measuring system from the perspective of general consumers(non-experts) who uses current population data. Specifically, it presents a method of estimating the floating population based on MAC-address values collected from smartphones. By distinguishing Real MAC-address and Random MAC-address values, we compare the estimated number of smartphone devices and the actual number of people caught on CCTV screens to evaluate the accuracy of the proposed method. And it appeared to have a similar correlation between the two datas. As a result, we present a method of estimating the floating population based on analyzing Wi-Fi Probe Requests

  • PDF