• 제목/요약/키워드: Counter electrodes

검색결과 108건 처리시간 0.027초

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체 (N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells)

  • 안하림;안효진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서 (A new nano-composite carbon ink for disposable dopamine biosensors)

  • 띠루 디나카란;장승철
    • 분석과학
    • /
    • 제29권1호
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

작업전극과 상대전극에 탄소나노튜브를 이용한 염료감응 태양전지의 특성연구 (The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes)

  • 김보라;송수일;이학수;조남준
    • 분석과학
    • /
    • 제27권6호
    • /
    • pp.308-313
    • /
    • 2014
  • 염료감응형 태양전지의 광전극 및 상대전극에 탄소나노튜브를 도입하여 전지의 광전기적 특성 변화를 EIS, J-V 특성곡선 및 UV-Vis 분광기를 이용하여 분석하였다. $TiO_2$ 광전극의 전기전도도 및 광전효율을 향상시키기 위해 전자전달 촉진자 역할을 하는 multi-wall carbon nanotube (MWCNT)를 $TiO_2$와 혼합하여 $TiO_2$-MWCNT 복합체를 sol-gel 연소 복합공정을 통해 제조하여 조사한 결과 0.1 wt% MWCNT를 첨가한 경우, $TiO_2$만을 사용한 경우에 비해 약 12.5%의 향상된 효율을 보였다. $TiO_2$-MWCNT 복합체에서 MWCNT가 $TiO_2$ 층의 전자이동을 향상시켜 저항을 감소하고 염료와 전자의 재결합을 감소시킨 결과로 생각된다. 그러나 0.1 wt%보다 많은 MWCNT를 첨가할 경우 광투과도 및 염료의 흡착량을 감소시켜 효율이 감소하였다. 또한 상대전극에 MWCNT와 MWCNT-Pt를 적용하였을 경우 각각의 효율은 1.2%와 4.1%로 MWCNT만 적용할 때 보다 백금이 담지된 MWCNT를 사용하였을 경우에 백금과 비슷한 효율을 보였다.

표면개질 및 분산제어된 다중벽 탄소나노튜브를 이용한 염료감응태양전지 대전극의 제조 (Fabrication of counter electrodes for dye-sensitized solar cells by using surface modified and dispersion controlled multi-walled carbon nanotubes)

  • 최희정;이기원;박남규;김경곤;홍성철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.445-447
    • /
    • 2008
  • 본 연구에서는 다중벽 탄소나노튜브용 표면개질제를 리빙라디칼중합법을 통하여 제조하고, 이를 이용하여 표면개질되고 분산제어된 다중벽탄소나노튜브를 제조하고 염료감응형 태양전지의 대전극 재료로 사용하였다. 우선 리빙라디칼중합법 중 nitroxide mediated polymerization (NMP) 기술을 이용하여 poly(maleic anhydride-co-p-acetoxystyrene)-block-poly(p-acetoxystyrene)를 합성하고, 공중합체중의 maleic anhydride기에 이미드화 반응을 통하여 pyrene기를 도입하였다. 공중합체 중의 p-acetoxystyrene 반복단위들은 가수분해 반응을 통하여 p-hydroxystyrene 반복단위로 변환하였으며, 제조된 공중합체의 구조와 열 특성 등을 GPC, GC, $^1H$-NMR, TGA을 통하여 분석하였다. 제조된 공중합체를 이용하여 다중벽 탄소나노튜브의 표면을 polymer wrapping법으로 처리하였고, 표면개질된 탄소나노튜브의 분산성을 다양한 용매에서 비교분석하였다. 표면이 개질되고 페이스트 내에의 분산성이 향상된 다중벽탄소나노튜브를 염료감응태양전지의 대전극 제조에 응용하였으며, 표면처리 및 분산제어 여부에 따른 제작 특성 및 동작특성 등을 평가하였다.

  • PDF

스퍼터링 증착한 Pt 전극을 가지는 염료감응형 태양전지의 셀 폭 변화에 따른 전기적 특성 연구 (Electrical Characteristics for Different Width of Dye-sensitized Solar Cell with Pt Electrode Deposited by Sputtering Methode)

  • 송건주;최진영;홍지태;김미정;서현웅;이동윤;김희제
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.910-914
    • /
    • 2007
  • Recently, a study on the energy conversion efficiency and up sizing' technology of dye-sensitized solar cell (DSC) which is focused in considering a new alternative solar cell has been executed. But consideration for the cell characteristics about an internal electronic flow on a large-scaled DSC has not been carried out yet. In this study, we have chosen a solar cell width as a variable of a large-scaled DSCs and confirmed electric characteristics of an individual cell. First, Pt counter electrode surface of DSC is deposited by RF sputtering methode and the electrochemical properties of Pt electrodes was investigated by cyclic -voltammetry. With the Pt electrode, we fabricated DSC samples of different width. As a result, the higher the internal resistance of DSC becomes, the wider the width gets. Internal resistance makes it difficult to collect photoelectron generated from dye. Ultimately up sizing DSC causes the increase of internal resistance and then has a bad effect on the cell characteristics.

Preparation of spray-coated $TiO_2$ electrodes and I-V characteristics for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Koo, Bo-Kun;Kim, Hyun-Joo;Lee, Dong-Yun;Song, Jae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.687-690
    • /
    • 2004
  • Fabrication and characterization of dye-sensitized TiO2 solar cells(DSSC) consisting of spray-coated TiO2 electrode, an electrolyte containing I-/I3- redox couple, and a Pt-coated counter electrode carried out, using mainly FE-SEM and solar simulator. Also, effect of rapid thermal annealing(RTA) temperatue on I-V curves of DSSCS consisting of approximately 10m thickness and $5{\times}5mm2$ active area. No significant difference in the apparent size of TiO2 clusters was observed with increasing RTA temperature. Also, an open circuit voltage(Voc) of approximately 0.70V and a short-circuit photocurrent(Jsc) of 8 to 12mA/cm2 were observed in the TiO2 solar cell. With increasing RTA temperature upto 550oC, photocurrent density of dye-sensitized solar cells was enhanced, leading to enhancing the efficiency of dye-sensitized solar cells having Pt-electroplated counter electrode.

  • PDF

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.94-99
    • /
    • 2017
  • Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.

투명전도층이 없는 염료감응형 태양전지의 Ru 상대전극 연구 (Ru employed as Counter Electrode for TCO-less Dye Sensitized Solar Cells)

  • 노윤영;유기천;유병관;한정조;고민재;송오성
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.159-163
    • /
    • 2012
  • A TCO-less ruthenium (Ru) catalytic layer on glass substrate instead of conventional Ru/TCO/ glass substrate was assessed as counter electrode (CE) material in dye sensitized solar cells (DSSCs) by examining the effect of the Ru thickness on the DSSC performance. Ru films with different thicknesses (34, 46, 69, and 90 nm) were deposited by atomic layer deposition (ALD) on glass substrates to replace both existing catalyst and electrode layer. In order to make our comparison, we also prepared an Ru catalytic layer by a similar method on FTO/glass substrate. Finally, we prepared the $0.45cm^2$ DSSC device the properties of the DSSCs were examined by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) method. CV measurements revealed an increase in catalytic activity with increasing film thickness. The charge transfer resistance at the interface between the electrolyte and Rudecreased with increasing Ru thickness. I-V results showed that the energy conversion efficiency increased up to 1.96%. Our results imply that TCO-less Ru/glass might perform as both catalyst and electrode layer when it is used in counter electrodes in DSSCs.

Diagnostic Assay of Phenol Ions in Human Tissue

  • Ly, Suw-Young;Lee, Jin-Hui;Yoo, So-Dam;Hong, Ki-Won;Lee, Kyu-Jung
    • 한국응용과학기술학회지
    • /
    • 제28권4호
    • /
    • pp.502-507
    • /
    • 2011
  • A voltammetric assay of phenol ions was investigated using three electrode systems of graphite pencil working, reference and counter electrodes. Under optimum analytical parameters, square wave stripping working ranges were attained at a mili range of 10~80 mg/L and a micro range of 20~90 ug/L using seawater electrolyte. The developed sensor was applied to tap water and the human body system of a smoker. It was found that the methods can be applied to in vivo fluid or medicinal diagnosis.

Development of UV-curable paste for micro mold transfer process of barrier ribs of PDPs

  • Kim, Yoo-Seong;Koh, Tae-geum;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.917-920
    • /
    • 2006
  • In an attempt to reduce processing cost and to improve resolution of PDPs, micro mold transfer processing route for barrier ribs of plasma display panel was developed. In this study, the parameters that may cause defects during the process were identified, which include the shrinkage during UV curing process, stress due to evaporation of organic components, and sintering shrinkage. Considering such parameters, UV curable paste was developed and barrier ribs of PDPs were successfully processed via the process. In addition, the process was successfully applied for the processing of barrier ribs with embedded counter electrodes.

  • PDF