Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.2.159

Ru employed as Counter Electrode for TCO-less Dye Sensitized Solar Cells  

Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul)
Yoo, Kicheon (Solar Cell Center, Energy Division, Korea Institute of Science and Technology(KIST))
Yu, Byungkwan (Department of Materials Science and Engineering, University of Seoul)
Han, Jeungjo (Department of Materials Science and Engineering, University of Seoul)
Ko, Minjae (Solar Cell Center, Energy Division, Korea Institute of Science and Technology(KIST))
Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.50, no.2, 2012 , pp. 159-163 More about this Journal
Abstract
A TCO-less ruthenium (Ru) catalytic layer on glass substrate instead of conventional Ru/TCO/ glass substrate was assessed as counter electrode (CE) material in dye sensitized solar cells (DSSCs) by examining the effect of the Ru thickness on the DSSC performance. Ru films with different thicknesses (34, 46, 69, and 90 nm) were deposited by atomic layer deposition (ALD) on glass substrates to replace both existing catalyst and electrode layer. In order to make our comparison, we also prepared an Ru catalytic layer by a similar method on FTO/glass substrate. Finally, we prepared the $0.45cm^2$ DSSC device the properties of the DSSCs were examined by cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V) method. CV measurements revealed an increase in catalytic activity with increasing film thickness. The charge transfer resistance at the interface between the electrolyte and Rudecreased with increasing Ru thickness. I-V results showed that the energy conversion efficiency increased up to 1.96%. Our results imply that TCO-less Ru/glass might perform as both catalyst and electrode layer when it is used in counter electrodes in DSSCs.
Keywords
solar cells; ALD; optical properties; nano electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Gratzel, Nature 414, 338 (2001).   DOI   ScienceOn
2 B. O'Regan and M. Gratzel, Nature 353, 737 (1991).   DOI
3 Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006).   DOI   ScienceOn
4 M. Gratzel, Inorg. Chem. 44, 6841 (2005).   DOI   ScienceOn
5 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993).   DOI   ScienceOn
6 Y. H. Luo, D. M. Li, and Q. B. Meng, Adv. Mater. 21, 4647 (2009).   DOI   ScienceOn
7 R. Jose, V. Thavasi, and S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009).   DOI   ScienceOn
8 H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Cluster Science, 18, 141 (2007).   DOI   ScienceOn
9 N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc. 144, 876 (1997).   DOI   ScienceOn
10 E.Olsen, G.Hagen, and S.E.Lindquist, Sol. Energ. Mater. Sol. C, 63, 267 (2000).   DOI   ScienceOn
11 A. Kay and M. Gratzel, Sol. Energ. Mater. Sol. C. 44, 99 (1996).   DOI   ScienceOn
12 C. H. Tsai, S. Y. Hsu, C. Y. Lu, Y. T. Tsai, T. W. Huang, Y. F. Chen, Y. H. Jhang, and C. C. Wu, Organic Electronics, 2011.
13 A. J. Hartmann, M. Neilson, R. N. Lamb, K. Watanabe, and J. F. Scott, Appl. Phys. A 70, 239 (2000).   DOI   ScienceOn
14 N. Bedford, C. Dablemont, G. Viau, P. Chupas, and V. Petkov, J. Phys. Chem. C 111, 18214 (2007).   DOI   ScienceOn
15 A. Salomonsson, R. M. Petoral, K. Uvdal, C. Aulin, P. Kall, L. Ojamae, M. Strand, M. Sanati, and A. L. Spetz, J. Nanopart. Res. 8, 899 (2006).   DOI   ScienceOn
16 S. F. Yin, B. Q. Xu, S. J. Wang, and C. T. Au, Appl. Catal. A 301, 202 (2006).   DOI   ScienceOn
17 H. M. Kwon, D. W. Han, D. J. Kwak, and Y. M. Sung, Appl. Phys. 10, 172 (2010).
18 T. K. Eom, W. Sari, K. J. Choi, W. C. Shin, J. H. Kim, D. J. Lee, K. B. Kim, H. Sohn, and S. H. Kim, Electrochem. Solid State Lett. 12, D85 (2009).   DOI   ScienceOn
19 K. Lahtinen, P. Maydannik, P. Johansson, T. Kaariainena, D. C. Camerona, and J. Kuusipalo, Surf. Coating Tech. 205, 3916 (2011).   DOI   ScienceOn
20 P. Johansson, K. Lahtinen, J. Kuusipalo, T. Kaariainen, P. Maydannik, and D. Cameron, Atomic Layer Deposition Process for Barrier Applications of Flexible Packaging, Tappi 2010 PLACE Conference, TAPPI (2010).
21 Y. Kashiwa, Y. Yoshida, and S. Hayase, APL. 1, (2008).
22 F. Z. Dahou, L. Cattin, J. Garnier, J. Ouerfelli, M. Morsli, G. Louarn, A. Bouteville, A. Khellil, and J. C. Bernede, Thin Solid Films. 518, 6117 (2010).   DOI   ScienceOn
23 K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, Chem. Lett. 32, 28 (2003)   DOI   ScienceOn
24 B. Fan, X. Mei, K. Sun, and J. Ouyang, Appl, Phys, Lett. 93, 143103 (2008).   DOI   ScienceOn
25 T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy, and M. Gratzel, J. Electrochem. Soc. 153, A2255 (2006).   DOI   ScienceOn
26 X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).   DOI   ScienceOn
27 H. Choia, H. Kima, S. Hwanga, W. Choib, and M. Jeon, Sol. Energ. Mater. Sol. C. 95, 323 (2011)   DOI   ScienceOn
28 Y. H. Kim, H. W. Ryu, Y. R. Cho, and W. S. Sub, J. Kor. Inst. Met. & Mater. 44, 838 (2006).