• Title/Summary/Keyword: Counter Force

Search Result 169, Processing Time 0.026 seconds

Inertia Force Comparison of 2 Stage Reciprocating Air Compressors (이단 왕복동 공기압축기 구조에 따른 관성력 비교)

  • Kim, Young-Cheol;Ahn, Kook-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.23-29
    • /
    • 2009
  • For the purpose of high outlet pressure, compactness and low vibration and noise, 2 stage reciprocating air compressors can have various cylinder arrangement: opposed, in-line, and V type. This paper presents an effective method to calculate the inertia forces and to design counter weight. This method is based on the complex representation for the orbital behavior of the compressor shaft. This method helps to find the optimal balancing rate easily to reduce the inertial force or moment. This paper shows that the residual inertia forces of the single throw shafts and the residual inertia moments of the double throw shafts remain to be imbalanced.

Experimental Study on the Mold Life of Fine Blanking Using Thick Plate Materials (후판 소재를 적용한 파인 블랭킹 금형 수명에 관한 연구)

  • Park, D.H.;Hyun, K.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • Fine blanking is a high-precision process combining principles of metal stamping and cold forming. Unlike conventional metal stamping, fine blanking uses a special triple action such as V-ring force, counter force, shearing force. This study performed the effect of pocket-shaped compression molding on the mold life of the fine blanking using the 7.4mm thick SM45C material. In order to determine the lifespan of the punch and die in the fine blanking molds, a trial mold was manufactured and various punch materials were selected to perform the mold life test. A study on the life of a fine blanking mold by applying a thick plate material was experimentally performed through a mold test.

A Novel Type of Discrete Time Predictive Current Controllers for Parallel Resonant Inverters (병렬 공진형 인버터에서 사용되는 새로운 형태의 이산시간 예측 전류 제어기)

  • Huh, Sung-Hoi;Choy, Ick;Kim, Kwon-Ho;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.309-311
    • /
    • 1996
  • In this paper, we propose two types of novel discrete time current control methods of modified fixed band hysteresis control and optimal control for Parallel Resonant DC Link Inverters(PRDCLI). Because zero bus voltage intervals are generated on the DC link of PRDCLI, we can obtain the information of counter electromotive force(emf) by a simple estimation strategy. The proposed current controllers predict the currents of the next resonant cycle using the obstained information of counter emf and the average values of DC link voltages. The computer simulation results for a simple equivalent circuit of induction motor show that the proposed control methods are more effective than conventional methods.

  • PDF

Study on the Dynamic Behaviors of Wave Energy Converter by using RecurDyn (리커다인을 이용한 파력발전기 동적거동 연구)

  • Sohn, Jeong-Hyun;Jun, Chul-Woong;Kim, Min-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, the multi-body dynamics model for a wave energy converter is established. The equations of motions for the mechanical parts of the wave energy converter are derived to analyze the dynamic behavior. A spring method with the same performance as the counter weight method is proposed. The counter weight method and spring method are analyzed for evaluating the performance of the wave energy converter. RecurDyn program which is a kind of commercial multi-body dynamics program is used to perform the dynamic simulation of the wave energy converter.

Effects of Blankholding force and Vee-ring on the Blanking Characteristics in Fine-Blanking Die (정밀전단금형에서 판누름압력과 삼각돌기가 전단특성에 미치는 영향)

  • 이종구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.188-193
    • /
    • 1996
  • This study was performed the blankholding force and vee-ring effects on Blanking characteristics, such as maximum blanking force, burnish, dish-shape, hardness. etc, in fine-blanking die by the experimental method. Two types of aluminum (Al. 1050-0, Al 5052-H) Such as annealed and unannealed materials were used for the experiment. In order to get a hydrostatic pressure effect, the clearance was set to 0.5% of the thickness of strip, and the counter punch and stripper plate with Vee-ring was set-up. While this experiment was carrying out, the average blanking Velocity was constant (37.5mm/sec) As a result of this study, we got a good surface roughness and a glassy shear plane(burnish) of the sheet over 90% thickness, and such as the excellent accuracy of dimensions, the good squareness and the reduction of dish-shape could be obtained, and also the additional results obtained were such that the hardness of shear plane was increased and the maximum blanking force was reduced in the condition of Vee-ring height of 1.0~1.5mm, and blankholding force of 1200kg.

  • PDF

Isolation and Purification of Bioactive Materials Using High-Performance Counter-Current Chromatography (HPCCC) (고속역류크로마토그래피 기술을 이용한 생리활성 물질의 분리 및 정제)

  • Jung, Dong-Su;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2010
  • Many successive liquid-liquid extractions occur enabling purification of the crude material to occur. In high performance counter-current chromatography (HPCCC), crude material is partitioned between two immiscible layers of solvent phases. The stationary phase (SP) is retained by hydrodynamic force field effect and the mobile phase (MP) is pumped through the column. Purification occurs because of the different solubility of the components in the liquid mobile and stationary phases. There are many key benefits of liquid stationary phases such as high mass and volume injection loadings, total sample recovery, and easy scale-up. Many researchers showed that predictable scale-up from simple test is feasible with knowledge of the stationary phase retention for the planned process scale run. In this review we review the recent advances in HPCCC research and also describe the key applications such as natural products and synthetics (small or large molecules).

The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump (착지 후 점프 시 높이가 하지 관절의 변화와 부상기전에 미치는 영향)

  • Cho, Joon-Haeng
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height on the lower extremity during a counter movement jump. Fourteen healthy male subjects (age: $27.00{\pm}2.94$ yr, height: $179.07{\pm}5.03$ cm, weight: $78.79{\pm}6.70$ kg) participated in this study. Each subject randomly performed three single-leg jumps after s single-leg drop landing (counter movement jump) on a force platform from a 20 cm and 30 cm platform. Paired t-test (SPSS 18.0; SPSS Inc., Chicago, IL) was performed to determine the difference in kinematics and kinetics according to the height. All significance levels were set at p<.05. The results were as follows. First, ankle and knee joint angles in the sagittal plane increased in response to increasing landing height. Second, ankle and knee joint angles in the frontal plane increased in response to increasing landing height. Third, there were no significant differences in the moment of each segment in the sagittal plane for the jumping height increment. Fourth, ankle eversion moment and knee valgus moment decreased but hip abduction moment increased for the jumping height increment. Fifth, Ankle and knee joint powers increased. In percentage contribution, the ankle joint increased but the knee and hip joints decreased at a greater height. Lastly, as jumping height increased, the power generation at the ankle joint increased. Our findings indicate that the height increment affect on the landing mechanism the might augment loads at the ankle and knee joints.

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

A Study on the Steps of Shear Deformations Behavior of Fine-Blanking Process (Fine-Blanking시 전단 단계별 변형 거동에 관한 연구)

  • 이종구;박원규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.26-33
    • /
    • 2002
  • One characteristic of Fine-Blanking is that the size and the direction of stress and strain are very complex in the plastic flow according to the condition of blanking. Especially, they are affected by the clearance of punch and die, by the force of blanking holder and by the force of counter punch. The purpose of this research is to how the deformation behavior in shear zone more clearly, based on Green & Cauch's large deformation theory. The deformation behavior and cracks were investigated in each step of shear, according to punch penetration increase, the use of V-indenter ring and the hardness of materials. This research found that the transforming behavior was the same as pure discretion and the cracks could be prevented when hardness is low.

A Study on Avoiding Collision between a Ship and Bridge and Minimizing Damages if Unavoidable (선박과 교량의 충돌예방과 충돌시 손상의 감소방법에 관한 연구)

  • Yoon, Byoung-Won;Yun, Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.376-382
    • /
    • 2007
  • A Collapse of bridge by ship's collision to the bridge post may lead a great calamity. This paper investigates on avoiding collision between a ship and bridge by improvement of environmental factors, submitting a counter plan of reducing collision effect by triangular type of collision protecting bar and ship maneuvering skills. Putting up collision protecting bar fences of triangular type around the bridge posts would decrease the collision impact force by 75 percent.

  • PDF