• Title/Summary/Keyword: Cotton/polyester blend fabric

Search Result 14, Processing Time 0.019 seconds

Effects of Treatments with Two Lipolytic Enzymes on Cotton/Polyester Blend Fabrics

  • Lee, So Hee;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1107-1116
    • /
    • 2013
  • This study examined the use of cutinase and lipase to process cotton/polyester blend fabric. Optimum treatment conditions for cutinase and lipase were investigated for cotton/polyester blend fabric. The properties of enzyme-treated fabrics were evaluated and compared in optimal treatment conditions. In addition, the possibility to provide an enzymatic finishing on blend fabrics using mixed enzymes in a two-step process were studied. The weight loss of cotton/polyester blend fabrics with Triton X-100 was 0.8% and the dyeing property of blend fabrics with calcium chloride increased by a factor of 1.2. The use of two enzymes in combination with cutinase and lipase in the presence of auxiliaries resulted in a cotton/polyester blend fabric weight loss of 0.8%. In addition, the dyeing properties of cotton/polyester blend fabrics improved by a factor of 1.5 and the moisture regain of cotton/polyester blend fabrics improved by a factor of 1.16. However, no marked loss was observed in tensile strength. The surface morphology of cotton/polyester blend fabrics is modified through a two-enzyme treatment. The treatment of cotton/polyester blend fabrics with cutinase and lipase maintains cotton strength and improves the moisture regain of polyester fabrics.

Biodegradation of Cotton/Polyester Blends (면/폴리에스터 혼방직물의 생분해성 평가)

  • Lee, Seung-Hyun;Park, Chung-Hee;Im, Seung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.2
    • /
    • pp.347-355
    • /
    • 2005
  • Biodegradability of cotton/polyester blend fabric was investigated employing activated sluge test, soil burial test and enzyme hydrolysis. Surface changes of the degraded sample were observed through a microscopy. Changes in X-ray diffraction patterns and crystallinity were examined using X-ray diffractometer. Experimental results revealed that biodegradability of cotton/polyester blend fabric was proportional to the blending ratio of cotton, not showing any synergy effect. Polyester 100% hardly degraded in this study. Through the comparison of the experimental method it was shown that the biodegradabilities determined from activated sludge test and enzymatic hydrolysis except soil burial test were linearly related to the blending ratio of cotton in the blent fabrics. It is probably because the biodegradability determined from the retention of tensile strength of fabrics buried in soil was affected by the stress distribution of polyesters throughout the fabric. From the microscopic observations it was revealed that fungi were grown on the fabric surface and the colors turned yellow, brown and black. X-ray diffraction patterns showed that the heights of crystalline peak coming from cotton part in blend fabrics decreased whereas those coming from polyester part increased comperatively as time passed by. Crystallinities of cotton 100% fabric increased slightly at the begining and then decreased continuously.

Synthesis of Temporarily Solubilized Reactive Disperse Dyes and Their Application to the Polyester/Cotton Blend Fabric

  • Lee, Jung-Jin;Han, Nam-Keun;Lee, Won-Jae;Park, Jae-Hong;Kim, Jae-Pil
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2002
  • Five temporarily solubilized reactive disperse dyes were synthesized and characterized. They were applied to polyester/cotton blend fabric using one-bath dyeing method without dispersing agent. The dye that has azonaphthalene chro-mophore seemed to not only be exhausted on polyester but also react with cotton. But other dyes were selectively dyed on polyester and showed limited uptake on cotton. Good levelling as well as moderate to good colour fastness was obtained with the dyes on P/C blend fabric.

Instrumental Measurements of Hand Attributes on Microfiber Polyester/Cotton Blend Fabric Finished with Silicone Mixed Fluorochemical

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.10 no.6
    • /
    • pp.16-27
    • /
    • 2006
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber /40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were fabric hand attributes. Fabric hand was evaluated by instrumental measures using Kawabata KES-F system instruments. Silicone-only finishes did not change the bending properties significantly from those of the control fabric. The fluorochemical-only finish made the fabric stiffer and crisper. When the two chemicals were mixed they tended to offset this adversary effect. Most of the chemical finishes made the surface finer and smoother. Fluorochemical-only finish improved fabric strength. Likewise, dimethylpolysiloxane silicone improved fabric strength. Amino-functional hydrophilic and diamino-functional silicone softeners, on the other hand, reduced fabric strength. However, when mixed with the fluorochemical, the adversary effect was diminished.

Alkali-Treatment of Polyester/Cotton Blend Fabric (Polyester/면 혼방직물의 alkali 처리가공)

  • Lee, Suk-Young;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.3 no.3
    • /
    • pp.6-14
    • /
    • 1991
  • To develop an one-bath process for weight-reduction and mercerization of polyester/cotton fabric, concentrated NaOH solution was padded and steam-treated at high temperature. Following results which can be used commercially are obtained. (1) Steaming temperature of 110-12$0^{\circ}C$ is most efficient. (2) Optimum concentration of NaOH solution is 15-20%. (3) Most favorable weight-reduction is 20% in the aspect of fabric handle, and under this treating condition, dye exhaustion onto the mercerized cotton fiber is also increased to 40% or more. From above results, we believe that the economical and concurrent weight-reduction and mercerzation of polyester/cotton fabric can be realized. Moreover, with continuous treatment by pad-steam procedure, it is expected that this is, also, advantageous for the improvement of fabric quality and productivity.

  • PDF

A Study on the One Bath One Step Thermosol Dyeing of Polyester/Cotton Blended Fabrics (폴리에스터/면 혼방직물의 1욕 1단 서모졸 염색에 관한 연구)

  • Ro, Duck-Kil
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • In this study the effects of swelling and fixing agent for the cotton side of polyester/cotton blended fabrics and the thermosol temperature on the dyeing properties and fastness. were investigated, when the polyester/cotton blended fabrics were dyed with a disperse dye which was able to dye both side of fiber by one bath one step thermosol process. The obtained results are as follows; The dye adsorption decreased with the increase of cotton blend ratio in polyester/cotton blended fabrics, when the ratio of swelling and fixing agent for cotton side was constant. As the thermosol temperature increased up to $210^{\circ}C$, the dye adsorption were increased, but that effect was less significant when the cotton blend ratio was higher.

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

The Disperse Dyeing of Polyester/Cotton Blend Using a Hetero-bifunctional Bridge Compound (I) (이반응형 브리지 화합물을 이용한 폴리에스테르/면 복합소재의 단일분산염료염색 (I))

  • Kim Tae-Kyeong;Yoon Seok-Han;Kim Mi-Kyung
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.1-9
    • /
    • 2006
  • In order to dye polyester/cotton blend fabric by one-bath dyeing process with single disperse dye, a novel hetero-bifunctional bridge compound(DBDCBS) was synthesized and utilized. The DBDCBS was designed to contain two different reactive groups such as ${\alpha},{\beta}$-dibromopropionylamido and dichloro-s-triazinyl groups. The ${\alpha},{\beta}$-dibromopropionylamido group shows considerable reactivity towards amines or amino groups at acidic condition and high temperature. In contrast, the dichloro-s-triazinyl group has reactivity towards hydroxyl groups at alkaline condition and room temperature. In order to examine whether as a bridge the compound could combine dyes containing amino groups with cellulosic substrates, disperse dyes containing amino group were tried to dye the cotton fibers pretreated with the DBDCBS compound. By the results, polyester/cotton blends were dyed by one-bath dyeing process with single disperse dye,1,4-diaminoanthraquinone.

Bedding Fabric Performance Using Polyester, Tencel and Cotton MVS Blended Spun Yarns (PET, Tencel, Cotton MVS 혼방사로 제직된 침구용 직물의 성능평가)

  • Sa, A-Na;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • This study evaluated the performance of bedding fabrics consisting of warp (150d/144f, polyester) and weft (polyester, Tencel and cotton MVS blended spun yarn) with blend ratio of weft. We measured electrostatic propensity, moisture properties, pilling properties and mechanical properties of the fabrics for this study. F-P fabric showed outstanding moisture properties and pilling properties. However, tensile properties and electrostatic propensity were relatively inferior to other characteristic values. Significant static electricity may make F-P fabric uncomfortable. F-P7C3 fabric showed outstanding moisture properties and pilling properties. Static electricity may make F-P7C3 fabric uncomfortable; in addition, F-P5C5 fabric showed outstanding moisture properties and pilling properties. Rough and stiff hand feel were expected to increase because tensile properties decreased and surface properties increased. F-C fabric showed outstanding pilling properties and electrostatic propensity. However, it showed inferior moisture control properties. F-P5T4C1 fabric showed outstanding moisture properties, pilling properties and electrostatic propensity. Several properties are outstanding; however, the hand feels are very rough and stiff from bending. The water evaporation and static electricity increased with increasing polyester content. As the content of cotton increased, tensile properties were improved. However, water evaporation and static electricity decreased. The addition of Tencel increased the thickness and compression energy so that it exhibited a soft characteristic upon compression and an excellent moisture control properties, but the surface became somewhat coarse.

Radiation Grafting of Flame Retardant to Polyester/Cotton Blend

  • Kong, Young-Kun;Chang, Hun-Sun;Lee, Jong-Kwang;Park, Jai-Ho
    • Nuclear Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1980
  • The grafting studies were concentrated on working out the methodology for radiation of flame retardants to polyester/cotton (65/35) blend fabric. The Fyrol 76 was used as a flame retardant in develping methodology for localizing flame retardants on the surface of the blend fabric. By judicious control of the swelling conditions, time_of contact with the monomer, and dose rate, locating the graft in the fiber became possible. The yield of the graft polymerization was depended upon the total dose and the preswelling conditions. Oxygen Index was used to evaluate the effect of the location of Fyrol 76 and other flame retardants within the surface upon the flame retardance efficiencies. To get a better flame retardance efficiency by :the localized grafting of Fyrol 76 to polyester/cotton blend fabric, a technique of one step processing at room temperature was developed substituting the ordinary two-step processing at high temperature.

  • PDF