• Title/Summary/Keyword: Cost-Effectiveness

Search Result 2,592, Processing Time 0.051 seconds

Effect of Coating System to Prevent the Deterioration of Concrete Subjected to Compressive Stress (압축응력이 인가된 콘크리트의 열화제어를 위한 표면도막공법의 효과)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.23-30
    • /
    • 2012
  • For cracked concrete, it is obvious that cracks should be preferential channel for the penetration of aggressive substances such as chloride ions according to the previous researches. In order to extend the lifetime of cracked concrete, critical issues in the performance of the concrete is the risk of chloride-induced corrosion. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study on the effect of surface coating system, which can be able to seal the concrete and the cracks to aggressive substances-induced corrosion in particular. In this study, it is excuted to examine the effect of surfaced treated systems on chloride penetration and carbonation through compressive stress induced cracks. Experimental results have showed conclusively that critical stress linked with deterioration, should be existed in compressive stress ratio 50 ~ 70% for chloride penetration and 70 ~ 80% for carbonation, respectively. When the critical stress is exceeded in concrete, a comparatively large deterioration was measured where the critical stress in concrete, the increase in the mass transportation is marginal in spite of the large increase in micro-cracks. As for the effect of surface coating system on crack-sealing, it can be seen conclusively that cracks can be healed.

Towards Safety Based Design Procedure for Ships

  • Bakker, Marijn;Boonstra, Hotze;Engelhard, Wim;Daman, Bart
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • Present-day rules and regulations for the design and construction of ships are almost without exemption of a prescriptive and deterministic nature. Often it is argued that this situation is far from ideal; it does no right to the advances, which have been made during the past decades in engineering tools in marine technology, both in methodology and in computational power. Within IMO this has been realized for some time and has resulted in proposals to use Formal Safety Assessment(FSA) as a tool to improve and to modernize the rule making process. The present paper makes use of elements of the FSA methodology, but instead of working towards generic regulations or requirements, a Risk Assessment Approach, not unlike a 'safety case'; valid for a certain ship or type of ship is worked out. Delft University of Technology investigated the application of safely assessment procedures in ship design, in co-operation with Anthony Veder Shipowners and safety experts from Safely Service Center BV. The ship considered is a semi-pressurized-fully refrigerated LPG carrier. On the basis of the assumption that a major accident occurs, various accident, scenarios were considered and assessed, which would impair the safety of the carrier. In a so-called Risk Matrix, in which accident frequencies versus the consequence of the scenarios are depicted, the calculated risks all appeared lo be in the ALARP('as low as reasonable practicable') region. A number of design alternatives were compared, both on safety merits and cost-effectiveness. The experience gained with this scenario-based approach will be used to establish a set of general requirements for safety assessment techniques in ship design. In the view that assessment results will be most probably presented in a quasi-quantified manner, the requirements are concerned with uniformity of both the safety assessment. These requirements make it possible that valid comparison between various assessment studies can be made. Safety assessment, founded on these requirements, provides a validated and helpful source of data during the coming years, and provides naval architects and engineers with tools experience and data for safety assessment procedures in ship design. However a lot of effort has to be spent in order to make the methods applicable in day-to-day practice.

  • PDF

An Embedded FAST Hardware Accelerator for Image Feature Detection (영상 특징 추출을 위한 내장형 FAST 하드웨어 가속기)

  • Kim, Taek-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Various feature extraction algorithms are widely applied to real-time image processing applications for extracting significant features from images. Feature extraction algorithms are mostly combined with image processing algorithms mostly for image tracking and recognition. Feature extraction function is used to supply feature information to the other image processing algorithms and it is mainly implemented in a preprocessing stage. Nowadays, image processing applications are faced with embedded system implementation for a real-time processing. In order to satisfy this requirement, it is necessary to reduce execution time so as to improve the performance. Reducing the time for executing a feature extraction function dose not only extend the execution time for the other image processing algorithms, but it also helps satisfy a real-time requirement. This paper explains FAST (Feature from Accelerated Segment Test algorithm) of E. Rosten and presents FPGA-based embedded hardware accelerator architecture. The proposed acceleration scheme can be implemented by using approximately 2,217 Flip Flops, 5,034 LUTs, 2,833 Slices, and 18 Block RAMs in the Xilinx Vertex IV FPGA. In the Modelsim - based simulation result, the proposed hardware accelerator takes 3.06 ms to extract 954 features from a image with $640{\times}480$ pixels and this result shows the cost effectiveness of the propose scheme.

Improvement of Address Pointer Assignment in DSP Code Generation (DSP용 코드 생성에서 주소 포인터 할당 성능 향상 기법)

  • Lee, Hee-Jin;Lee, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2008
  • Exploitation of address generation units which are typically provided in DSPs plays an important role in DSP code generation since that perform fast address computation in parallel to the central data path. Offset assignment is optimization of memory layout for program variables by taking advantage of the capabilities of address generation units, consists of memory layout generation and address pointer assignment steps. In this paper, we propose an effective address pointer assignment method to minimize the number of address calculation instructions in DSP code generation. The proposed approach reduces the time complexity of a conventional address pointer assignment algorithm with fixed memory layouts by using minimum cost-nodes breaking. In order to contract memory size and processing time, we employ a powerful pruning technique. Moreover our proposed approach improves the initial solution iteratively by changing the memory layout for each iteration because the memory layout affects the result of the address pointer assignment algorithm. We applied the proposed approach to about 3,000 sequences of the OffsetStone benchmarks to demonstrate the effectiveness of the our approach. Experimental results with benchmarks show an average improvement of 25.9% in the address codes over previous works.

Development of Management and Evaluation System for Realistic Virtual Reality Field Training Exercise Contents : A Case Study (실감형 가상현실 실전훈련 콘텐츠를 위한 관리 평가 시스템 개발 사례연구)

  • Kim, J.;Park, D.;Lee, P.;Cho, J.;Yoon, S.H.;Park, S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.111-121
    • /
    • 2020
  • Realistic training contents utilizing intensive immersion of virtual reality are being used in various fields such as industry, education, and medical care. High-risk, high-cost education training, in particular, is difficult to conduct in reality, but it can be applied with the latest virtual reality technology that enhances educational effectiveness by efficiently and safely experiencing it in an environment similar to reality. This study introduces a management system that systematically manages realistic virtual training contents and visualizes training results in schematic pictures based on defined evaluation elements. The management system can store the information generated from the content in the database and manage the training records of each trainee in a practical way. In addition, a content-based scenario can be created in multiple scenarios by setting training goals, number of participants, and methods for applying evaluation elements. This paper describes the management system's production method and the results based on the virtual reality training content as an application example.

Optimi Design for R.C. Beam with Discrete Variables (이산형 설계변수를 갖는 철그콘크리트보의 최적설계)

  • 구봉근;한상훈;김홍룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.167-178
    • /
    • 1993
  • The objective of this paper is to look into the possibility of the detailed and practical optimum design of rt:inforced concrete beam using methods oi discrete mathematical programming. In this discrete optimum formulation, the design variables are the overall depth, width and effective depth of members, and area of longitudinal reinforcement. In addition, the details such as the amount of web reinforcement and cutoff points of longitudinal reinforcement are also considered as variables. Total cost has been used as the objective function. The constraints include the code requirments such as flexural strength, shear strength, ductility, serviceability, concrete cover. spacing, web reinforcement, and development length and cutoff points of longitudinal renforcement. An optimization algorithm is presented for effective optimum design of R.C. beam with discrete de sign variables. First, the continuous variable optimization can be achieved by Feasible Direction Method. Using the results obtained from the continuous variable optimization, a branch and bound method is used to obtained the discrete design values. The proposed algorithm is applied to test problem for reliability, and the results are compared with those of graphical method and rounded-up method. And a simply supported R.C. beam and a two-span continuous R.C. beam are presented as numerical examples for effectiveness and applicability. It is considered that the presented algorithm can be effectively applied to the discrete optimum design of R.C. beams.

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Analysis of the Effectiveness of Simplified Slope Stabilization Methods for the Continuous Utilization of Skid Trails (산림작업로의 지속적 활용을 위한 간이 사면안정처리 효과분석)

  • Lee, Kwan-Hee;Hwang, Jin-Seong;Ji, Byoung-Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.582-591
    • /
    • 2019
  • This study was conducted to develop low-cost, simplified slope stabilization methods for the continuous utilization of skid trails, and to analyze the effect of the developed methods. Slope stabilization methods were created on the fill slopes of skid trails in the Forest Technology and Management Research Center of the National Institute of Forest Science.We measured the settlement and bearing capacity of skid trail surfaces, and the displacement of slope stabilization methods with respect to the number of passes (maximum 100 passes) by a logging truck weighing 17 tons. The constancy of slope stabilization methods was determined by measuring displacement of the stabilization structure with respect to the number of logging truck passes. Results showed that the bearing capacity in most cases was insufficient, but that the settlement of skid trails was less than 150 mm, which was considered reasonable. In addition, the stability of root staking wallswas somewhat low, but the average displacements of all slope stabilization methods were generally around 20 mm or less, indicating no issues regarding structural stability. By applying the simplified stabilization methods to skid trail maintenance following timber harvesting, efficient timber harvesting can be achieved. Additionally, these methods can be utilized as permanent forest management infrastructures and complement insufficient forest road facilities.

Power efficiency research for application of IoT technology (사물인터넷 기술 적용을 위한 소비전력 효율화 연구)

  • Seo, Younghoon;Park, Eun-Cheol;Kang, Sunghwan;Hwang, Jae-Mun;Yun, Junghwan;Eom, Junyoung;Gwon, Hyeong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.669-672
    • /
    • 2015
  • Recent Internet of Things (IoT, Internet of Things) that can be applied to various fields as the development of technology has been developed a lot of service and has been developed with the service also for crop management. To manage the essential elements of soil moisture in the crop growth but existing a direct person measuring the fluid point to carry the measuring instrument, if you take advantage of the WPAN (Wireless Personal Area Network) in this paper to manage sensor data, a fixed 3 points (30, 60, 90 cm) and can be managed can be scientifically analyzed the state of growth of the crop. Open field environment is utilized as it is less disturbance of the interference and the frequency of the radio frequency signal of the structure provides a relatively comfortable environment. Therefore, WPAN building and data transmission scheme of the minimum cost is to be developed. In addition, the operation to enter low power mode, the algorithm is necessary because a lot of restrictions on the power supply applied to the sensor nodes and the gateway is constructed in the open field. In the experiment, verifying the effectiveness by using a network configuration of each of the sensor nodes and the gateway, and provides a method for time synchronization of the operation and a low power mode. The study protocol for the RF communication with the LoRa and to enhance communication efficiency is needed in the future.

  • PDF

Effect of Evasive Maneuver Against Air to Air Infrared Missile on Survivability of Aircraft (공대공 적외선 위협에 대한 회피기동이 항공기 생존성에 미치는 영향)

  • Bae, Ji-Yeul;Bae, Hyung Mo;Kim, Jihyuk;Jung, Dae Yoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.501-506
    • /
    • 2017
  • An infrared seeking missile does not emit any signal by itself as it is guided by passive heat signature from an aircraft. Therefore, it is difficult for the target aircraft to notice the existence of incoming missile, making it a serious threat. The usage of MAW(missile approach warning) that can notify the approaching infrared seeking missile is currently limited due to its high cost. Furthermore, effectiveness of MAW against infrared seeking missile is not available in open literature. Therefore, effect of evasive maneuver by MAW on the survivability of the aircraft is simulated to evaluate the benefit of the MAW in this research. The lethal range is used as a measure of aircraft survivability. An aircraft flying at an altitude of 5km with Mach 0.9 being tracked by air-launched AIM-9 infrared seeking missile is considered in this research. As a variable for the evasive maneuver, the MAW recognition distance of 5~7km and the G-force of 3~7G that limits maximum directional change of the aircraft are considered. Simulation results showed that the recognition of incoming missile by MAW and following evasive maneuver can reduce the lethal range considerably. Maximum reduction in lethal range is found to be 29.4%. Also, the MAW recognition distance have a greater importance than the aircraft maneuverability that is limited by structural limit of the aircraft.