DOI QR코드

DOI QR Code

Effect of Coating System to Prevent the Deterioration of Concrete Subjected to Compressive Stress

압축응력이 인가된 콘크리트의 열화제어를 위한 표면도막공법의 효과

  • 윤인석 (인덕대학교 건설정보공학과)
  • Received : 2011.12.22
  • Accepted : 2012.03.12
  • Published : 2012.05.30

Abstract

For cracked concrete, it is obvious that cracks should be preferential channel for the penetration of aggressive substances such as chloride ions according to the previous researches. In order to extend the lifetime of cracked concrete, critical issues in the performance of the concrete is the risk of chloride-induced corrosion. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study on the effect of surface coating system, which can be able to seal the concrete and the cracks to aggressive substances-induced corrosion in particular. In this study, it is excuted to examine the effect of surfaced treated systems on chloride penetration and carbonation through compressive stress induced cracks. Experimental results have showed conclusively that critical stress linked with deterioration, should be existed in compressive stress ratio 50 ~ 70% for chloride penetration and 70 ~ 80% for carbonation, respectively. When the critical stress is exceeded in concrete, a comparatively large deterioration was measured where the critical stress in concrete, the increase in the mass transportation is marginal in spite of the large increase in micro-cracks. As for the effect of surface coating system on crack-sealing, it can be seen conclusively that cracks can be healed.

콘크리트 표면에 존재하는 균열은 염소이온의 침투에 대한 빠른 침투 통로가 되어 내구성능을 저하시킬 수 있다. 균열을 제어하기 위하여 설계적 측면에서 높은 철근비로 균열폭을 감소시킬 수는 있으나, 이러한 균열이 실질적으로 내구성을 저하시키는데에 따른 검토 및 내구성 향상을 유도할 수 있는 방법이 필요하다. 표면도막공법은 균열폭이 작은 경우에 균열을 실링하여 염소이온 침투를 차단하는데 가장 간단한 방법중의 하나이며, 경제성 대비 성능도 만족할 만 하다. 그래서 표면도막공법이 콘크리트와 균열을 함침하여 유해물질의 침투로 인한 철근의 부식을 제어하기 위한 유효성을 검토하는 연구가 필요하다. 본 연구는 표면도막공법으로 압축응력 인가로 인한 미세균열을 통한 염소이온 침투의 제어 가능성을 검토하고자 하였다. 실험결과는 염소이온은 압축응력 인가율 50~70%, 탄산화는 70~80%의 범위에서 임계응력이 존재하는 것으로 나타났는데, 이 임계치 이상을 초과하게 되면 상대적으로 심각한 열화가 진전되는 것을 확인할 수 있었다. 또한, 표면도막공법은 균열치료효과를 얻는데 유효한 것으로 판단되었다.

Keywords

References

  1. 양은익, 진상호, 김명유, 최윤석, 한상훈, "초기 휨균열이 철근 콘크리트 부재의 염화물 침투저항성에 미치는 영향", 한국구조물진단학회지, 제15권 2호, 2011, pp.79-87.
  2. 윤인석, "미세균열이 콘크리트의 염소이온 침투에 미치는 영향 I - 현상학적 모델, 한국콘크리트학회논문집", 한국콘크리트학회, 제19권 1호, 2007, pp.57-65. https://doi.org/10.4334/JKCI.2007.19.1.057
  3. 윤인석, "미세균열이 콘크리트의 염소이온 침투에 미치는 영향 II - 임계균열폭의 고찰", 한국콘크리트학회 논문집, 한국콘크리트학회, 제19권 6호, 2007, pp.707-715. https://doi.org/10.4334/JKCI.2007.19.6.707
  4. 윤인석, 김영근, 박기봉, "미세균열이 콘크리트의 염소이온 침투에 미치는 영향 III: 배합조건 특성에 따른 미세균열의 특성", 한국콘크리트학회 논문집, 제20권, 2008, pp.469-475. https://doi.org/10.4334/JKCI.2008.20.4.469
  5. 윤인석, 채규봉, "표면도장공법을 적용한 미세균열 콘크리트의 염소이온 침투 제어 특성", 대한토목학회 논문집, 제28권 5A호, 2008, pp.729-735.
  6. 한국시설안전기술공단, 콘크리트 구조물의 균열, 누수 보수보강 전문시방서, 건설교통부, 1999, pp.6.8-6.8.
  7. 社團法人 日本コングリㅡト工學協會, コングリㅡトのひび割れ調査, 補修.補强設計-2003.
  8. ACI Committee 224, Causes, Evaluation and Repair of Cracks in Concrete Structures, ACI Manual of Concrete Practice, Detroit, USA.
  9. Almusallam, A., Khan, F. M. and Maslehuddin, M., "Performance of Concrete Coatings under Varying Exposure Conditions", Materials and Structures, vol. 35, 2002, pp.487-494. https://doi.org/10.1007/BF02483136
  10. Concrete Society, Non-Structural Cracks in Concrete, Concrete Society Technical Report No. 22, Concrete Repair Manual, 2nd Edition, vol. 1, ACI, BRE, Concrete Society, International Concrete Repair Institute, UK, 1992.
  11. Dai, J. G., Akira, Y., Wittman, F. H., Yokota, H. and Zhang, P., "Water Repellent Surface Impregnation for Extension of Service Life of Reinforced Concrete Structures in Marine Environments: the Role of Cracks", Cement & Concrete Composites, vol. 32, 2010, pp.101-109. https://doi.org/10.1016/j.cemconcomp.2009.11.001
  12. Kay, T., "Assessment and Renovation of Concrete Structures", Longman Scientific and Technical, Esses., 1992.
  13. Lim, C. C., Gowripalan, N. and Sirivivatnanon, V., "Microcracking and Chloride Permeability of Concrete under Uniaxial Compression", Cement and Concrete Composite, vol. 22, 2000, pp.353-360. https://doi.org/10.1016/S0958-9465(00)00029-9
  14. Mehta, P. K. and Monteiro, P. J. M., Concrete - Microstructure, Properties, and Materials, Third Edition, McGraw-Hill, 2006.
  15. Ngab, A. S. and Slate, F. O., "Microcracking and Time Dependent Strains in High-strength Concrete", ACI Journal, 1981, pp.262-268.
  16. Nolan, E., Basheer, P. A. M. and Long, A. E., "Effects of Three Durability Enhancing Products on Some Physical Properties of Near Surface Concrete", Construction and Building Materials, vol. 9, No. 5, 1995, pp.267-272. https://doi.org/10.1016/0950-0618(95)00020-G
  17. NT Build 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiment, Finland.
  18. Samaha, H. R. and Hover, K. C., "Influence of Microcraking on the Mass Transport Properties of Concrete", ACI Materials Journal, vol. 89, 1992, pp.416-424.
  19. SHRP, Concrete Bridge Protection, Repair, and Rehabilitation Relative to Reinforcement Corrosion: A Methods Application Manual, SHRP-S-360, Washington, 1993, pp.48-64.
  20. Smadi, M. M. and Slate, F. O., "Microcracking of High and Normal Strength Concrete under Short and Long Term Loadings", ACI Materials Journal, vol. 86, 1989, pp.117-126.
  21. Sunny, O. N. and James, D., "A Practical Approach to In-situ Evaluation of Surface-treated Structures", Construction and Building Materials, vol. 15, 2000, pp.199-212.
  22. Swamy, R. N. and Tanikawa, S., "An External urface Coating to Protect Concrete and Steel from Aggressive environments", Materials and Structures, vol. 26, 1993, pp.465-478. https://doi.org/10.1007/BF02472806
  23. Swamy, R. N. and Tanikawa, S., "Surface Coatings to Preserve Concrete Durability", Proceedings of International Conference on Protection of Concrete, E & FN SPon, London, 1990, pp.149-165.