Area Offices of Education in Korea assign and execute government budget based on the evaluation of school buildings' safety rating and degree of their deterioration. However, it is never easy to estimate the most appropriate investment amount for old buildings under consideration of their service lives and residual values together. A model of estimating optimum investment cost for obsolete school building is developed taking its life cycle cost into account. The model is also applied to six old buildings in five different schools and found that some of the facilities hardly needed further investment and were better to be rebuilt. The study results will be a great beneficial for officers to make right decision on maintaining obsolete school buildings and to maximize tax payers' money.
To measure the effect of school zone on housing cost, Linear Regression Model is widely used, and school zone is known as a key determinant of housing cost in Korea. However, when the Hierarchical Linear Model (HLM) is applied with the same data, school effect on housing cost becomes statistically non-significant. It is because HLM effectively separates the effect of individual housing's attributes from the group effect. In sum, the housing cost of Kangnam, where good public schools are located, is apparently is higher than that of Kangbuk. However, the school effect on housing cost (Level 2) becomes non-significant when individual housing's attributes (Level 1) are controlled with HLM.
The purpose of this paper is to propose a new software development cost estimation method using SVR(Support Vector Regression) SVR, one of machine learning techniques, has been attracting much attention for its theoretic clearness and food performance over other machine learning techniques. This paper may be the first study in which SVR is applied to the field of software cost estimation. To derive the new method, we analyze historical cost data including both well-known overseas and domestic software projects, and define cost drivers affecting software cost. Then, the SVR model is trained using the historical data and its estimation accuracy is compared with that of the linear regression model. Experimental results show that the SVR model produces more accurate prediction than the linear regression model.
국내 도로건설사업에 있어서 개략공사비 산정 기준은 건설교통부 및 기획예산처, 한국도로공사 등에서 제시하는 평균 건설단가를 기준으로 활용하고 있다. 이때 도로의 등급, 구조물 추간의 구성 비율 등에 따라 공사비를 도정하고 있으나 다양한 공사 특성을 반영하고, 지속적인 공사비 갱신의 기준 등에 한계를 가지고 있다. 대규모 재원이 투입되는 건설공사의 공사비를 합리적인 방법으로 적정하게 예측하는 것은 사업비 관리 측면에서 필수적인 요소는 기술이라 할 수 있다. 본 연구에서는 기획단계에서 가용한 정보를 활용하여 공사비를 예측할 수 있는 사에 기반추론 PSC BEAM교의 개략공사비 산정모델을 개발하였다. 제시된 공사비 예측모델을 검증하기 위하여 표본교량을 대상으로 공사비를 추정한 결과 $-11.92%{\sim}3.20%$의 추정편차를 나타내었으며, 기존 개략공사비 산정 기준에 비해 신뢰도가 향상되었다.
Current software cost estimation models, such as the 1951 COCOMO, its 1987 Ada COCOMO update, is composed of nonlinear models, such as product attributes, computer attributes, personnel attributes, project attributes, effort-multiplier cost drivers, and have been experiencing increasing difficulties in estimating the costs of software developed to new lift cycle processes and capabilities. The COCOMO II is developed fur new forms against the current software cost estimation models. This paper provides a case-based analysis result of the cost driver in the software cost models, such as COCOMO and COCOMO 2.0 by fuzzy and neural network.
In Korea weapon system acquisition processes, it's required a cost estimation report obtained from a commercial cost model. The PRICE model is generally used as a cost estimation model in Korea. However, the model uses American historical R&D data and it's output cost component is different from our cost component of defense accounting system. Also, we found that estimating results show about 10% of difference when we comparing with actual costs in 44 finished weapon acquisition projects. There are some limitations in calibration to increase an accuracy of the PRICE model because it's difficult obtain good real input data, detailed cost and technical data in low level WBS. So, only 8% of the defense R&D projects are calibrated and validation of calibration results is more difficult. Therefore, we studied the standard calibration process and performed the calibration about the MCPLXS/E parameters of the PRICE model based on actual cost data. In order to obtain a good calculation result, we collected the actual material costs from the defense industry companies. Our results can be used for an reference in similar weapon system R&D and production cost estimation cases.
국내 도로건설사업은 평균 단가 기준으로 개략공사비를 산정한다. 도로의 기초자료를 갱신함으로써 평균 단가를 수정하고 있으나 공사 특성을 전부 반영하기에는 미흡한 실정이다. 설계 진행단계에서 설계 대안을 평가하는데 활용할 수 있는 공사비 예측모델의 필요성이 제기되는 가운데 대표공정을 통해 표준물량을 산출하고 개략공사비 산정모델개발을 통해 실질적인 공사비 예측이 가능한 모델을 개발하고자 한다. 본 연구에서는 Prestressed Concrete Box Girder Bridge의 상부공사를 중심으로 연구를 수행하며 $2000{\sim}2007$년 사이에 수행되었던 구조물공 41건에 대한 기초자료를 수집하고 토목공사 수량산출기준에 의한 내역서를 기반으로 Grouping을 실시하여 대표적 특수교량인 ILM(Incremental Launching Method), MSS(Movable Scaffolding System), FSM(Full Staging Method), 그리고 FCM(Free Cantilever Method)등 교량 형식별로 총공사비에서 공사비 비중 및 해당 공종에서의 중요도가 높은 항목을 중심으로 설계 초기단계에서 가용한 정보 수준을 고려하여 대표공종 선정한다. 교량 형식별 선정된 대표공종을 살펴보면 P.S.C 강재설치 및 긴장작업/P.S.C BOX/자재대 및 자재운반비/철근가공 및 조립/증기양생/콘크리트 타설/거푸집/교면 방수/동바리 등 교량형식별 특수성을 제외하면 대표공종들이 순공사비에서 차지하는 비중이 비슷함을 알 수 있다. 공종들이 총공사비에서 차지하는 비율은 ILM(99.47%)/ MSS(99.22%)/ FSM(98.18%)/ FCM(98.12%)로 나타났다.
Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.
Accurate construction cost estimation in the initial stage of building project plays a key role for project success and for mitigation of disputes. Total construction cost(TCC) estimation of apartment projects in Vietnam has become more important because those projects increasingly rise in quantity with the urbanization and population growth. This paper presents the application of artificial neural networks(ANNs) in estimating TCC of apartment projects. Ninety-one questionnaires were collected to identify input variables. Fourteen data sets of completed apartment projects were obtained and processed for training and generalizing the neural network(NN). MATLAB software was used to train the NN. A program was constructed using Visual C++ in order to apply the neural network to realistic projects. The results suggest that this model is reasonable in predicting TCCs for apartment projects and reinforce the reliability of using neural networks to cost models. Although the proposed model is not validated in a rigorous way, the ANN-based model may be useful for both practitioners and researchers. It facilitates systematic predictions in early phases of construction projects. Practitioners are more proactive in estimating construction costs and making consistent decisions in initial phases of apartment projects. Researchers should benefit from exploring insights into its implementation in the real world. The findings are useful not only to researchers and practitioners in the Vietnam Construction Industry(VCI) but also to participants in other developing countries in South East Asia. Since Korea has emerged as the first largest foreign investor in Vietnam, the results of this study may be also useful to participants in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.