• 제목/요약/키워드: Cost Control Time

검색결과 1,706건 처리시간 0.035초

Challenges to Prevent in Practice for Effective Cost and Time Control of Construction Projects

  • Olawale, Yakubu A.
    • Journal of Construction Engineering and Project Management
    • /
    • 제10권1호
    • /
    • pp.16-32
    • /
    • 2020
  • Cost and time control of projects is important in preventing project failure. However, achieving effective cost and time control in practice is often challenging. The challenges of project cost and time control in practice are investigated by carrying out a questionnaire survey on the top 150 construction contractors in the UK followed by in-depth semi-structured interviews of practitioners from 15 construction companies in the country. Quantitative analysis reveals that design change is the most important factor inhibiting the ability of UK contractors from effectively controlling both the cost and time of construction projects. Four of the top five factors inhibiting effective cost control are also the top factors inhibiting effective time control albeit in a different order. These top factors-design changes, inaccurate evaluation of project time/duration, risk and uncertainty, non-performance of subcontractors and nominated suppliers were also found to be endogenous factors to the project. Additionally, qualitative analysis of the interviews reveals 16 key challenges to prevent for effective project cost and time control in practice. These are classified into four categorised based on where they stem from as follows; from the organisation (1. Lack of integration of cost and time during project control, 2. lack of management buy-in, 3. complicated project control systems and processes, 4. lack of a project control training regime); from the construction management/project management approach (5. Lapses in integration of interfaces, 6. project control not being implemented from the early stages of a project, 7. inefficient utilisation and control of labour, 8. limited time devoted to planning how a project will be controlled at the outset); from the client; (9. Excessive authorisation gates, 10. use of adversarial and non-collaborative forms of contracts, 11. communication problems within client set-up, 12. obstructive client representatives) and; from the project team (13. Lack of detailed/complete design, 14. lack of trust among the project partners, 15. limited time devoted to project control on site, 16. non-factual reporting). The study posits that knowledge of these project control inhibiting factors and challenges is the first step at ensuring they are avoided and enable the implementation of a more effective project cost and time control process in practice.

Guaranteed Cost Control of Parameter Uncertain Systems with Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.19-23
    • /
    • 2000
  • In this paper, we deal with the problem of designing guaranteed cost state feedback controller for the generalized time-varying delay systems with delayed state and control input. The generalized time delay system problems solved on the basis of LMI(linear matrix inequality) technique considering time-varying delays. The sufficient condition for the existence of controller and guaranteed cost state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed controller design method can be extended into the problem of robust guaranteed cost controller design method for parameter uncertain systems with time-varying delays easily.

  • PDF

A Combined Process Control Procedure by Monitoring and Repeated Adjustment

  • Park, Changsoon
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.773-788
    • /
    • 2000
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for processes quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation. while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been needs for a process control proceduce which combines the tow strategies. This paper considers a combined scheme which simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an integrated moving average(IMA) process with a step shift. The EPC part of the scheme adjusts the process back to target at every fixed monitoring intervals, which is referred to a repeated adjustment scheme. The SPC part of the scheme uses an exponentially weighted moving average(EWMA) of observed deviation from target to detect special causes. A Markov chain model is developed to relate the scheme's expected cost per unit time to the design parameters of he combined control scheme. The expected cost per unit time is composed of off-target cost, adjustment cost, monitoring cost, and false alarm cost.

  • PDF

불확실 시간지연 시스템에 대한 지연량을 고려한 성능보장 제어 (Delay-dependent Guaranteed Cost Control for Uncertain Time-delay Systems)

  • 이영삼;문영수;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.13-13
    • /
    • 2000
  • This paper considers delay-dependent guaranteed cost control for uncertain time-delay systems with norm-bounded parametric uncertainties. A new delay-dependent condition for the existence of the guaranteed cost control law is presented in terms of linear matrix inequalities (LMI). An algorithm involving convex optimization is proposed to design a controller which guarantees the suboptimal minimum of the guaranteed cost of the closed-loop system for all admissible uncertainties.

  • PDF

시간지연 특이시스템의 비약성 보장비용 제어 (Non-fragile guaranteed cost control of delayed descriptor systems)

  • 김종해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.246-248
    • /
    • 2006
  • This paper is concerned with non-fragile guaranteed cost state feedback controller design algorithm for descriptor systems with time-varying delay and static state feedback controller with multiplicative uncertainty. The considered uncertainties are norm-bounded and time delay is time-varying. Under the condition of controller gain variations, conditions for the existence of controller satisfying asymptotic stability and non-fragility and controller design method are derived via LMI approach. Moreover, the measure of non-fragility and the upper bound to minimize guaranteed cost function are given.

  • PDF

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

파라미터 불확실성을 가지는 시간 지연 시스템에 대한 보장비용 출력궤환제어 (Guaranteed Cost Output Feedback Control for Time Delay Systems with Parameter Uncertainties)

  • 박재훈;정상섭;오도창;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.271-271
    • /
    • 2000
  • This paper considers guaranteed cost output feedback controller for the uncertain time-varying delay systems with delays in state and control input. The uncertainty in the system is assumed to be norm-bounded and time-varying. The sufficient condition for the existence of controller and the guaranteed cost output feedback controller design method are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Using the obtained LMI variables, we derive guaranteed cost controller gain and guaranteed cost.

  • PDF

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.

저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가 (Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers)

  • 채정근;이동선;강인숙;박찬식
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.