• Title/Summary/Keyword: Cost/ Weight Optimization

Search Result 185, Processing Time 0.027 seconds

Optimal Design for Reliability with Lognormally Distributed Stress and Strength (대수(對數) 정규분포(正規分布)를 하는 부하(負荷)와 강도(强度) 신뢰성(信賴性)모델에서의 최적화(最適化) 설계(設計)에 관(關)한 연구(硏究)(I))

  • Kim, Bok-Man;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.43-53
    • /
    • 1990
  • Mechanical components and structures are a major part of complex systems and the conseguences of their failure can be extremely costly. The ultimate goal of design engineers is to optimize these mechanical and structural design from the point of view of cost, reliability, weight, volume, maintainability and safety. An essential requirement of design optimization is to develop mathematical models for reliability at design stage. This paper is to minimize the cost of resources subject to the constraint that the reliability of the system must meet a specified level. The lagrange multiplier method is used to optimize the lognormal stress-lognormal strength problem. This optimization problem can be reduced to a search problem in one variable. A numerical example is presented to illustrate the optimization problem.

  • PDF

A k-out-of-n System Reliability Optimization Problem with Mixed Redundancy (혼합 중복 k-out-of-n 시스템 신뢰도 최적화 문제)

  • Baek, Seungwon;Jeon, Geonwook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.90-98
    • /
    • 2013
  • The k-out-of-n system with mixed redundancy is defined as k-out-of-n system which both includes warm-standby and cold-standby components. In case that operating components in the system fail and the system needs quick transition of standby components to operation state, the k-out-of-n system with mixed redundancy is useful for decreasing system failure rate and operational cost. Reliability-Redundancy Optimization Problem (RROP) involves selection of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. A solution methodology by using harmony search algorithm for RROP of the k-out-of-n system with mixed redundancy to maximize system reliability was suggested in this study.

Optimal Electric Energy Subscription Policy for Multiple Plants with Uncertain Demand

  • Nilrangsee, Puvarin;Bohez, Erik L.J.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.106-118
    • /
    • 2007
  • This paper present a new optimization model to generate aggregate production planning by considering electric cost. The new Time Of Switching (TOS) electric type is introduced by switching over Time Of Day (TOD) and Time Of Use (TOU) electric types to minimize the electric cost. The fuzzy demand and Dynamic inventory tracking with multiple plant capacity are modeled to cover the uncertain demand of customer. The constraint for minimum hour limitation of plant running per one start up event is introduced to minimize plants idle time. Furthermore; the Optimal Weight Moving Average Factor for customer demand forecasting is introduced by monthly factors to reduce forecasting error. Application is illustrated for multiple cement mill plants. The mathematical model was formulated in spreadsheet format. Then the spreadsheet-solver technique was used as a tool to solve the model. A simulation running on part of the system in a test for six months shows the optimal solution could save 60% of the actual cost.

A Cost-Optimization Scheme Using Security Vulnerability Measurement for Efficient Security Enhancement

  • Park, Jun-Young;Huh, Eui-Nam
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.61-82
    • /
    • 2020
  • The security risk management used by some service providers is not appropriate for effective security enhancement. The reason is that the security risk management methods did not take into account the opinions of security experts, types of service, and security vulnerability-based risk assessment. Moreover, the security risk assessment method, which has a great influence on the risk treatment method in an information security risk assessment model, should be security risk assessment for fine-grained risk assessment, considering security vulnerability rather than security threat. Therefore, we proposed an improved information security risk management model and methods that consider vulnerability-based risk assessment and mitigation to enhance security controls considering limited security budget. Moreover, we can evaluate the security cost allocation strategies based on security vulnerability measurement that consider the security weight.

A Study on the Shape Optimization Design of the Knuckle by the Finite Element Analysis (유한요소해석에 의한 Knuckle의 최적형상설계에 관한 연구)

  • Rha, W.Y.;Lee, S.H.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. It is required more precise analysis for practical load because of complexities and varieties of vehicle structure. In this study, the shape optimization using a FEA is performed to determine the design of the knuckle. The size optimization is carried out to find thickness while the stiffness constraints are satisfied. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

  • PDF

OVERALL BENEFIT-DURATION OPTIMIZATION (OBDO) FOR OWNERS IN LARGE-SCALE CONSTRUCTION PROJECTS

  • Seng-Kiong Ting;Heng Pan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.780-785
    • /
    • 2005
  • This paper aims to consider an overall benefit-duration optimization (OBDO) problem for the sake of maximizing owner's economic benefits, whilst considering influences of schedule compression incurred opportunity income on the profitability of a large-scale construction project. Unlike previous schedule optimization models and techniques that have focused on project duration or cost minimization, with greater weight on contractors' interests, OBDO facilitates owner's economic benefits through overall benefit-duration optimization. In this paper, the objective function of OBDO model is formulated. An example is illustrated to prove the feasibility and practicability of the overall benefit-duration optimization problem. The significance of employing OBDO model and future research work are also described.

  • PDF

Shape Optimization of Truss Structures with Multiobjective Function by α -Cut Approach (α -절단법에 의한 다목적함수를 갖는 트러스 구조물의 형상최적화)

  • Yang, Chang Yong;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.457-465
    • /
    • 1997
  • The Shape optimization makes it possible to reduce the weight of structure and cost then member sizing optimization. A vast amount of imprecise information is existed in constraints of the optimum design. It is very difficult and sometimes confusing to describe and to deal with the several criteria which contain fuzzy degrees of relatives importance. This paper proposed weighting strategies in the multiobjective shape optimization of fuzzy structural system by ${\alpha}$-cut approach. The algorithm in this research is numerically tested for 2-bar truss structure. The result show that. the user can choose the one optimum solution in practices as obtaining the optimum solutions according to the ${\alpha}$-cut approach, weight of volume and displacement.

  • PDF

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

PID Control Design with Exhaustive Dynamic Encoding Algorithm for Searches (eDEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.691-700
    • /
    • 2007
  • This paper proposes a simple but effective design method of PID control using a numerical optimization method. In order to achieve both stability and performance, gain and phase margins and performance indices of step response directly compose of the cost function. Hence, the proposed approach is a multiobjective optimization problem. The main effectiveness of this approach results from the strong capability of the used optimization method. A one-dimensional example concerning gain margin illustrates the practical applicability of the optimization method. The present approach has many degrees of freedom in controller design by only adjusting related weight constants. The attained PID controller is compared with Wang#s and Ho#s methods, IAE, and ISE for a high-order process, and the simulation result for various design targets shows that the proposed approach achieves desired time-domain performance with a guarantee of frequency-domain stability.