• 제목/요약/키워드: Cosmic rays

검색결과 126건 처리시간 0.022초

The CREAM Experiment in the International Space Station

  • 이직;전진아;이현수;이혜영;임희진;박일흥;;김홍주;박한배;이무현;서은석
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.206.1-206.1
    • /
    • 2012
  • The NASA Antarctica balloon experiment CREAM has successfully collected the data of energetic cosmic rays during six flights in past years. It recently observed the unexpected discrete hardening in energy spectra of comic rays. However high-statistics data of energetic cosmic rays are required for the further investigation of the unexpected hardening in comic-ray energy spectra. The International Space Station (ISS) is an ideal platform for the CREAM experiment to investigate the unexpected hardening and explore the fundamental issues like the acceleration mechanism and the origin of energetic cosmic rays because of the high duty cycle of the experiment in the ISS platform. We will present the design of the ISS-CREAM experiment, and the development and fabrication status of the detector components including the 4-layer silicon charge detector which will measure the charge constitution of cosmic rays with unprecedented accuracy.

  • PDF

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

Solar Cyclic Modulation of Diurnal Variation in Cosmic Ray Intensity

  • Park, Eun Ho;Jung, Jongil;Oh, Suyeon;Evenson, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.219-225
    • /
    • 2018
  • Cosmic rays are ions that move at relativistic speeds. They generate secondary cosmic rays by successive collisions with atmospheric particles, and then, the secondary particles reach the ground. The secondary particles are mainly neutrons and muons, and the neutrons are observed by the ground neutron monitor. This study compared the diurnal variation in cosmic ray intensity obtained via harmonic analysis and that obtained through the pile-up method, which was examined in a previous study. In addition, we analyzed the maximum phase of the diurnal variation using four neutron monitors with a cutoff rigidity below approximately 6 GV, located at similar longitudes to the Oulu and Rome neutron monitors. Expanding the data of solar cycles 20-24, we examined the time of the maximum cosmic ray intensity, that is, the maximum phase regarding the solar cyclic modulation. During solar cycles 20-24, the maximum phase derived by harmonic analysis showed no significant difference with that derived by the pile-up method. Thus, the pile-up method, a relatively straightforward process to analyze diurnal variation, could replace the complex harmonic analysis. In addition, the maximum phase at six neutron monitors shows the 22-year cyclic variation very clearly. The maximum phase tends to appear earlier and increase the width of the variation in solar cycles as the cutoff rigidity increases.

Energy spectrum of particles arriving at the ground and S(800) determination by Monte Carlo simulation for Telescope Array

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • Telescope Array (TA) experiment in Utah, USA, observes ultrahigh-energy cosmic rays (UHECRs); UHECRs refer cosmic rays with energy above $10^{18}eV$. Using COSMOS and CORSIKA, we have produced a library of over 1000 thinned extensive air shower (EAS) simulations with the primary energies ranging from $10^{18.5}eV$ to $10^{20.25}eV$ and the zenith angle of primary cosmic ray particle from $0^{\circ}$ to $45^{\circ}$. Here, we present the energy spectrum of particles arriving at the ground. We have also calculated the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator.

  • PDF

THE CONTRIBUTION TO THE EXTRAGALACTIC γ-RAY BACKGROUND BY HADRONIC INTERACTIONS OF COSMIC RAYS PRODUCING EUV EMISSION IN CLUSTERS OF GALAXIES

  • KUO PING-HUNG;BOWYER STUART;HWANG CHORNG- YUAN
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.597-600
    • /
    • 2004
  • A substantial number of processes have been suggested as possible contributors to the extragalactic $\gamma$-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.

Diffusion of Cosmic Rays in a Multiphase Interstellar Medium Shocked by a Supernova Remnant Blast Wave

  • Roh, Soonyoung;Inutsuka, Shu-ichiro;Inoue, Tsuyoshi
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.1-38.1
    • /
    • 2015
  • Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations of gamma rays from the vicinity of SNRs have shown strong evidence that Galactic CR protons are accelerated by the shock waves of the SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyze the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the CRs diffusion at a length scale of order a few pc, and show the Richtmeyer-Meshkov instability can provide enough turbulence downstream of the shock to make the diffusion coefficient close to the Bohm level for energy larger than 30 TeV for a realistic interstellar medium.

  • PDF

NUMERICAL STUDIES OF COSMIC RAY ACCELERATION AT COSMIC SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2004
  • Shocks are ubiquitous in astrophysical environments and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration. It is believed that the CR pressure is important in the evolution of the interstellar medium of our galaxy and most of galactic CRs with energies up to ${\~}\;10^{15}$ eV are accelerated by supernova remnant shocks. In this contribution we have studied the CR acceleration at shocks through numerical simulation of 1D, quasi-parallel shocks for a wide range of shock Mach numbers and shock speeds. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies, and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number, and high Mach number shocks all evolve towards efficiencies ${\~}50\%$, regardless of the injection rate and upstream CR pressure. We conclude that the injection rates in strong quasi-parallel shocks are sufficient to lead to significant nonlinear modifications to the shock structures, implying the importance of the CR acceleration at astrophysical shocks.

생활주변방사선안전관리법 시행에 따른 항목별 선량 분석 (Analysis of Dose by Items According to Act on Safety Control of Radiation Around Living Environment)

  • 정천수;오현지;이지은;조수민;박소현
    • 한국방사선학회논문지
    • /
    • 제7권6호
    • /
    • pp.377-381
    • /
    • 2013
  • 최근 시행된 생활주변방사선안전관리법에 제시된 항목들을 분석하고자 하였다. 실험 항목을 우주방사선, 지각방사선, 공정부산물 등으로 나누고, 그에 따른 측정 장소를 상공 8000m의 비행기, 해발 1000m의 산악지대, 지하 15m 건물, 건설 현장, 해발 0m의 바닷가를 선정하였다. 실험결과 우주방사선을 기준으로 상공 8000m 비행기에서는 유효선량이 연간 2.45mSv로 측정되었다. 우주방사선과 지각방사선의 측정 장소로 선정된 해발 1000m 산악지대는 기준점인 0m인 바닷가에 비해 0.17mSv 높게 측정되었다. 공정부산물의 측정 장소로 선정된 건설 현장은 3.32mSv로 실험항목 중 가장 높은 수치를 나타내었다. 이는 완공된 건물 보다 약 5배 정도 높은 선량이라는 것을 알 수 있었다. 해발 0m인 바닷가는 2.89mSv로 측정되었고, 지각 방사선을 기준으로 설정된 지하 15m 건물에서는 2.36mSv로 가장 낮게 측정되었다. 이를 통해, 지하로 내려갈수록 지각 방사선을 많이 받을 것으로 예상되었으나 건물 안에서의 지각 방사선은 크게 영향을 주지 않는 것을 알 수 있었다. 본 연구를 통해 생활주변방사선안전관리법에서 제시된 각 항목들은 ICRP에서 제시한 방사선작업종사자의 연간 유효선량 기준에는 크게 미치지 않았다. 하지만 일반인의 연간 유효선량보다는 약 2~3배 정도 높은 선량인 것을 알 수 있었다. 이를 통해 아직 시행 초기 단계인 생활주변방사선안전관리법에 대한 지속적인 연구와 관심이 필요한 것으로 사료된다.

COREA 프로젝트를 위한 검출기 모의실험 (DETECTOR SIMULATIONS FOR THE COREA PROJECT)

  • 이성원;강혜성
    • 천문학논총
    • /
    • 제21권2호
    • /
    • pp.87-94
    • /
    • 2006
  • The COREA (COsmic ray Research and Education Array in Korea) project aims to build a ground array of particle detectors distributed over Korean Peninsular, through collaborations of high school students, educators, and university researchers, in order to study the origin of ultra high energy cosmic rays. COREA array will consist of about 2000 detector stations covering several hundreds of $km^2$ area at its final configuration and detect electrons and muons in extensive air-showers triggered by high energy particles. During the intial phase COREA array will start with a small number of detector stations in Seoul area schools. In this paper, we have studied by Monte Carlo simulations how to select detector sites for optimal detection efficiency for proton triggered air-showers. We considered several model clusters with up to 30 detector stations and calculated the effective number of air-shower events that can be detected per year for each cluster. The greatest detection efficiency is achieved when the mean distance between detector stations of a cluster is comparable to the effective radius of the air-shower of a given proton energy. We find the detection efficiency of a cluster with randomly selected detector sites is comparable to that of clusters with uniform detector spacing. We also considered a hybrid cluster with 60 detector stations that combines a small cluster with ${\Delta}{\iota}{\approx}100m$ and a large cluster with ${Delta}{\iota}{\approx}1km$. We suggest that it can be an ideal configuration for the initial phase study of the COREA project, since it can measure the cosmic rays with a wide range energy, i.e., $10^{16}eV{\leq}E{\leq}10^{19}eV$, with a reasonable detection rate.