• 제목/요약/키워드: Cosmic ray

검색결과 182건 처리시간 0.024초

Numerical Simulation of Cosmic-Ray Acceleration

  • JONES T. W.
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.231-235
    • /
    • 2001
  • Cosmic-ray acceleration, although physically important in many astrophysical contexts, is difficult to incorporate into numerical models,. because it involves microphysics that is generally far from thermodynamic equilibrium, and also because the length and time scales for that physics typically range over many orders of magnitude, reflecting the huge range of particle rigidities that must be represented. The most common accelerator models are stochastic in nature and involve nonequilibrium plasma properties that are also often poorly understood. Still, nature clearly finds a way to produce simple, robust and almost scale-free energy distributions for the cosmic-rays. Their importance has inspired a number of approaches to examining the production and transport of cosmic-ray particles in numerical simulations. I offer here a brief comparison of some of the methods that have been introduced.

  • PDF

Hydrodynamic approach to cosmic ray acceleration

  • KO CHUNG-MING
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.289-291
    • /
    • 2001
  • To study the structure and dynamics of a cosmic-ray-plasma system, hydrodynamic approach is a fairly good approximation. In this approach, there are three basic energy transfer mechanisms: work done by the plasma flow against pressure gradients, cosmic ray streaming instability and stochastic acceleration. The interplay between these mechanisms gives a range of structures. We present some results of different version of the hydrodynamic approach, e.g., flow structure, injection, instability, acceleration with and without shocks.

  • PDF

Seasonal Variation of Cosmic Ray Intensity Observed by the Oulu Neutron Monitor

  • Jeong, Jaesik;Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권3호
    • /
    • pp.165-170
    • /
    • 2020
  • Muons and neutrons are representative secondary particles that are generated by interactions between primary cosmic ray particles (mostly protons) and the nuclei of atmospheric gas compounds. Previous studies reported that muons experience seasonal variations because of the meteorological effects of temperature. The intensity of neutrons has a typical modulation with various periods and reasons, such as diurnal and solar variation or transient events. This paper reports that cosmic ray particles, which were observed by neutron monitors, have seasonal variations using the daily data at the Oulu neutron monitor. To eliminate the effects of solar activity across time, the daily data were normalized by two different transformations: transformations with respect to the grand mean and yearly mean. The data after transformation with respect to the yearly mean showed more statistical stability and clear seasonal variations. On the other hand, it is difficult to determine if the seasonal variation results from terrestrial effects, such as meteorological factors, or extraterrestrial effects, such as the position of the Earth in its orbit of revolution.

산악지형에서의 지역 규모 토양수분 산정을 위한 Cosmic-ray neutron probe 교정 함수 평가 (Evaluation of Calibration Function for Regional Scale Soil Moisture Estimation using Cosmic-Ray Neutron Probe in Forest)

  • 정재환;백종진;최민하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.19-19
    • /
    • 2019
  • 토양수분은 지표수가 증발, 유출, 침투되는 과정에 중요한 역할을 하는 수문 인자로, 수문학적인 관점에서 물 순환을 이해하는 데 필수적인 요소이다. 그럼에도 불구하고 토양 내 수분을 측정하는 데 어려움이 많아 국내에서는 토양수분의 지속적인 관측을 위한 관측소 운영이 원활하게 이루어지지 않고 있으며, 주로 유전율식 계측 방식을 통해 지점 기반의 토양수분 자료를 생산하는데 그치고 있다. 최근 발사된 토양수분 위성인 SMAP (Soil Moisture Active Passive)을 비롯한 위성기반의 토양수분 자료와 융합하여 사용하기 위해서는 지점에서의 토양수분 네트워크가 우선적으로 구축되어야 하나, 관측소의 수도 부족할 뿐 아니라, 지형이 복잡하고 산지가 많은 한반도에서는 점 단위의 토양수분 자료의 공간적 대표성이 부족하여 활용에 어려움이 많다. 따라서 본 연구에서는 운영중인 지점 기반의 토양수분 관측소의 FDR (Frequency Domain Reflectometry), TDR (Time Domain Reflectometry) 센서를 함께 활용하여 산악지형에서의 Cosmic-ray 기반 토양수분자료를 생산하고자 한다. 산악지형에서의 Cosmic-ray 센서는 토양 유기물과 식생 차단 등에 의한 영향이 많으므로 평지에서 토양수분을 산정하기 위한 교정 함수들의 비교 및 평가를 실시하였다. 일반적으로 평지에서 활용되는 교정 함수들은 강우에 따른 토양수분의 거동을 잘 나타내고 있는 것으로 확인되었으나, 갑작스러운 강우로 인한 식생 차단과 토양 유기물의 영향이 커지는 경우 토양수분의 급격한 변동성을 표현하기에는 한계가 있는 것으로 나타났다. 이러한 연구를 기반으로 산악지형에서 Cosmic-ray 센서에 영향을 미치는 인자들을 분석할 수 있으며, 추후 산악지형에서 지역 규모의 토양수분을 관측할 수 있는 관측소를 구축하는데 활용될 것으로 기대된다.

  • PDF

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

Study of Extensive air shower simulation

  • Roh, Soon-Young;Kim, Ji-Hee;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • Cosmic rays with energy exceeding 10^18eV are referred to as Ultra high energy cosmic rays (UHECRs). UHECR experiments have utilized air shower simulations to estimate the properties of cosmic rays. Telescope array (TA) experiment has used COSMOS and CORSIKA mainly; the Monte Carlo codes of CORSIKA and COSMOS simulate the evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei UHECRs. We compare the simulations from CORSIKA and COSMOS. Comparison has shown noticeable differences at the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax value. The implications of our results are discussed.

  • PDF

TWO POSSIBLE COSMIC X-RAY SPECTRAL LINES

  • WU XUEJUN;Xu CHONGMING
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.41-42
    • /
    • 1996
  • A possible cosmic X-ray background(XRB) radiation related to original antimatter is considered. If the universe is made of separating domains of antimatter and matter, the photons produced by the annihilation of electron-positron and proton-antiproton on the last scattering surface would reach us in the energy $\~$0.45 keV and $\~$60 keV respectively because of the redshift. The spectrums of X-ray radiation from annihilation are deduced and a possible observational figure is described also.

  • PDF

Energy spectrum of particles arriving at the ground and S(800) determination by Monte Carlo simulation for Telescope Array

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • Telescope Array (TA) experiment in Utah, USA, observes ultrahigh-energy cosmic rays (UHECRs); UHECRs refer cosmic rays with energy above $10^{18}eV$. Using COSMOS and CORSIKA, we have produced a library of over 1000 thinned extensive air shower (EAS) simulations with the primary energies ranging from $10^{18.5}eV$ to $10^{20.25}eV$ and the zenith angle of primary cosmic ray particle from $0^{\circ}$ to $45^{\circ}$. Here, we present the energy spectrum of particles arriving at the ground. We have also calculated the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator.

  • PDF

COSMIC RAYS ACCELERATED AT SHOCK WAVES IN LARGE SCALE STRUCTURE

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.477-482
    • /
    • 2004
  • Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.