[구ID-05] Development of SPICA FPC

Dae-Hee Lee¹, Woong-Seob Jeong¹, Toshio Matsumoto^{2,3}, Hyung Mok Lee², Young Sik Park¹, Chang Hee Rhee¹, Bong Gon Moon¹, Jeong Hyun Pyo¹, Sung Jun Park¹, Wonyong Han¹, Geon Hee Kim⁴, and Norihide Takeyama(5) ¹Korea Astronomy and Space Science Institute, ²Seoul National University, ³ISAS/JAXA, Japan, ⁴Korea Basic Science Institute, ⁵Genesia Co.

The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) is a next generation infrared space telescope being prepared by JAXA, ESA and other international collaborators. We propose to develop FPC (Focal Plane Camera) consisting of two near-infrared cameras: FPC-G (I band) for focal plane guidance and FPC-S (0.7 - 5 um) for a back-up of FPC-G and a NIR instrument for scientific observations. In this talk, we introduce the requirement and the design concept of the FPC as well as the development strategy of the project.

[7ID-06] Study of Extensive air shower simulation

Soonyoung Roh¹, Jihee Kim¹, Dongsu Ryu¹, Hyesung Kang², Katuaki Kasahara³, Eiji Kido³, Akimichi Taketa⁴ ¹Chungnam National University, 220, Gung-Dong, Yuseong-Gu, Deajeon, Korea, ²Department of Earth science, Pusan National University, Pusan 609-735, Korea, ³Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582, Japan, ⁴Center for High Energy geophysics Research, Earthquake Research Institute,

University of Tokyo, Tokyo, Japan

Cosmic rays with energy exceeding 10¹8eV are referred to as Ultra high energy cosmic rays (UHECRs). UHECR experiments have utilized air shower simulations to estimate the properties of cosmic rays. Telescope array (TA) experiment has used COSMOS and CORSIKA mainly; the Monte Carlo codes of CORSIKA and COSMOS simulate the evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei UHECRs. We compare the simulations from CORSIKA and COSMOS. Comparison has shown noticeable differences at the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax value. The implications of our results are discussed.