• Title/Summary/Keyword: Cosmic ray

Search Result 182, Processing Time 0.025 seconds

Tales of AGN tails: How AGN tails become radio relics in merging galaxy clusters?

  • Lee, Wonki;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.2-32.2
    • /
    • 2021
  • Radio relics, Mpc-size elongated diffuse radio emissions found at galaxy cluster outskirts, are known as the result of shock acceleration during the cluster merger. Theories have claimed that low Mach number shocks are too inefficient to create the observed properties of radio relics. Alternative scenarios such as fossil cosmic ray electrons (CRes) from AGNs are required to explain the observations. However, how exactly the fossil CRes from AGNs can supply the Mpc-size radio relic is still an open question. In this study, we present our recent uGMRT radio observation results of the merging galaxy cluster Abell 514. We found three remarkable AGN jet tails that may have undergone multiple reorientations and extend nearly 800 kpc. Using multi-frequency data, we have performed spectral analysis along the AGN tails and track how the tails lose or gain energy as they propagate in the intracluster medium. We will discuss whether these AGN jets can provide sufficient seed CRes to radio relics.

  • PDF

Structures and Energetics of Flows in Ultra-relativistic Jets

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.3-36.3
    • /
    • 2021
  • We study ultra-relativistic jets on several tens kpc scales through three-dimensional relativistic hydrodynamic (RHD) simulations using a new RHD code based on the weighted essentially non-oscillatory (WENO) scheme. Utilizing the high-resolution and high-accuracy capabilities of the new code, we especially explore the structures and energetics of nonlinear flows, such as shocks, turbulence, velocity shear in different parts of jets. We find that the mildly relativistic shocks which form in the jet backflow are most effective for the shock dissipation of the jet energy, while the turbulent dissipation is largest either in the backflow or in the shocked ICM, depending on the jet parameter. The velocity shear is strongest across the jet flow to the cocoon boundary. Our results should have important implications for the studies of high-energy cosmic-ray production in radio galaxies.

  • PDF

Properties of Shocks in Simulated Merging Clusters

  • Lee, Eunyu;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.67.3-67.3
    • /
    • 2021
  • Shocks are induced in the intracluster medium by mergers of subclusters during the hierarchical structure formation of the universe. Radio relics detected in the outskirts of galaxy clusters have been interpreted as diffuse synchrotron emission from cosmic ray electrons accelerated at such merger shocks. Using a set of cosmological hydrodynamic simulations, we study how the properties of merger-driven shocks depend on the parameters such as the mass ratio and impact parameter of mergers. In particular, we examine the distribution of the Mach number and energetics of shocks associated with synthetic radio relics in simulated merging clusters. In this poster, we will present the preliminary results and the implications.

  • PDF

Calibration of TEPC for CubeSat Experiment to Measure Space Radiation

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Lee, Dae-Hee;Kim, Sunghwan;Jin, Ho;Lee, Seongwhan;Kim, Jungho;Kitamura, Hisashi;Uchihori, Yukio
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • A newly designed Tissue Equivalent Proportional Counter (TEPC) has been developed for the CubeSat mission, SIGMA (Scientific cubesat with Instruments for Global Magnetic field and rAdiation) to investigate space radiation. In order to test the performance of the TEPC, we have performed heavy ion beam experiments with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. In space, human cells can be exposed to complex radiation sources, such as X-ray, Gamma ray, energetic electrons, protons, neutrons and heavy charged particles in a huge range of energies. These generate much a larger range of Linear Energy Transfer (LET) than on the ground and cause unexpected effects on human cells. In order to measure a large range of LET, from 0.3 to $1,000keV/{\mu}m$, we developed a compact TEPC which measures ionized particles produced by collisions between radiation sources and tissue equivalent materials in the detector. By measuring LET spectra, we can easily derive the equivalent dose from the complicated space radiation field. In this HIMAC experiment, we successfully obtained the linearity response for the TEPC with Fe 500 MeV/u and C 290 MeV/u beams and demonstrated the performance of the active radiation detector.

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

Dynamics of Barrel-Shaped Young Supernova Remnants (항아리 형태 젊은 초신성 잔해의 동력학)

  • Choe, Seung-Urn;Jung, Hyun-Chul
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.357-368
    • /
    • 2002
  • In this study we have tried to explain the barrel-shaped morphology for young supernova remnants considering the dynamical effects of the ejecta. We consider the magnetic field amplification resulting from the Rayleigh-Taylor instability near the contact discontinuity. We can generate the synthetic radio image assuming the cosmic-ray pressure and calculate the azimuthal intensity ratio (A) to enable a quantitative comparison with observations. The postshock magnetic field are amplified by shearing, stretching, and compressing at the R-T finger boundary. The evolution of the instability strongly depends on the deceleration of the ejecta and the evolutionary stage of the remnant. the strength of the magnetic field increases in the initial phase and decreases after the reverse shock passes the constant density region of the ejecta. However, some memory of the earlier phases of amplification is retained in the interior even when the outer regions turn into a blast wave. The ratio of the averaged magnetic field strength at the equator to the one at the pole in the turbulent region can amount to 7.5 at the peak. The magnetic field amplification can make the large azimuthal intensity ratio (A=15). The magnitude of the amplification is sensitive to numerical resolution. This mens the magnetic field amplification can explain the barrel-shaped morphology of young supernova remnant without the dependence of the efficiency of the cosmic-ray acceleration on the magnetic field configuration. In order for this mechanism to be effective, the surrounding magnetic field must be well-ordered. The small number of barrel-shaped remnants may indicate that this condition rarely occurs.

Study on the Applicability of Muography Exploration Technology in Underground Space Development (지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구)

  • Seo, Seunghwan;Lim, Hyunsung;Ko, Younghun;Kwak, Kiseok;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.22-33
    • /
    • 2021
  • Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

Physiological Characterization of Mono-Cotyledonous Model Plant by Ionizing Irradiation (단자엽 모델 식물의 이온화 에너지원에 따른 생리 활성)

  • Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Park, Yong Dae;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The present study has been performed to compare the physiological analysis of monocot model plant (rice) in response to ionizing irradiations (cosmic-ray, gamma-ray, and Ion beam). Ionizing radiations were implanted into monocot model plant (rice) seed. After irradiation, the seeds were planted in the plastic pots for a growth period of one month. Thereafter, the morphological and physiological characteristics including malondealdehyde (MDA) and chlorophyll content, activities of antioxidant enzymes in irradiation samples were investigated. We are confirmed that the activity level of MDA and chlorophyll content were not changed by ionizing irradiation samples. However, the free radical contents were increased in all irradiated plants. And the activities of SOD, POD, and APX were significantly increased by irradiation compared with non-irradiation plant.

Normalized Cross-Correlations of Solar Cycle and Physical Characteristics of Cloud

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.225-234
    • /
    • 2019
  • We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.

Mini Neutron Monitors at Concordia Research Station, Central Antarctica

  • Poluianov, Stepan;Usoskin, Ilya;Mishev, Alexander;Moraal, Harm;Kruger, Helena;Casasanta, Giampietro;Traversi, Rita;Udisti, Roberto
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.281-287
    • /
    • 2015
  • Two mini neutron monitors are installed at Concordia research station (Dome C, Central Antarctica, $75^{\circ}06^{\prime}S$, $123^{\circ}23^{\prime}E$, 3,233 m.a.s.l.). The site has unique properties ideal for cosmic ray measurements, especially for the detection of solar energetic particles: very low cutoff rigidity < 0.01 GV, high elevation and poleward asymptotic acceptance cones pointing to geographical latitudes > $75^{\circ}S$. The instruments consist of a standard neutron monitor and a "bare" (lead-free) neutron monitor. The instrument operation started in mid-January 2015. The barometric correction coefficients were computed for the period from 1 February to 31 July 2015. Several interesting events, including two notable Forbush decreases on 17 March 2015 and 22 June 2015, and a solar particle event of 29 October 2015 were registered. The data sets are available at cosmicrays.oulu.fi and nmdb.eu.