Browse > Article
http://dx.doi.org/10.5140/JASS.2019.36.4.225

Normalized Cross-Correlations of Solar Cycle and Physical Characteristics of Cloud  

Chang, Heon-Young (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
Publication Information
Journal of Astronomy and Space Sciences / v.36, no.4, 2019 , pp. 225-234 More about this Journal
Abstract
We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.
Keywords
solar activity; terrestrial climate; data analysis;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Eddy JA, The maunder minimum, Science 192, 1189-1202 (1976).   DOI
2 Emmert JT, Picone JM, Climatology of globally averaged thermospheric mass density, J. Geophys. Res. 115, A09326 (2010). https://doi.org/10.1029/2010JA015298
3 Forbush SE, World-wide cosmic ray variations, 1937-1952, J. Geophys. Res. 59, 525-542 (1954). https://doi.org/10.1029/JZ059i004p00525   DOI
4 Gordon H, Kirkby J, Baltensperger U, Bianchi F, Breitenlechner M, et al., Causes and importance of new particle formation in the present-day and preindustrial atmospheres, J. Geophys. Res. Atmos. 122, 8739-8760 (2017). https://doi.org/10.1002/2017JD026844
5 Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498
6 Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282   DOI
7 Haigh JD, The impact of solar variability on climate, Science 272, 981-984 (1996). https://doi.org/10.1126/science.272.5264.981   DOI
8 Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004). https://doi.org/10.1029/2003GI000060   DOI
9 Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9   DOI
10 Rawal A, Tripathi SN, Michael M, Srivastava AK, Harrison RG, Quantifying the importance of galactic cosmic rays in cloud microphysical processes. J. Atmos. Sol.-Terr. Phys. 102, 243-251 (2013). https://doi.org/10.1016/j.jastp.2013.05.017   DOI
11 Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006   DOI
12 Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539   DOI
13 Schiffer RA, Rossow WB, The International Satellite Cloud Climatology Project (ISCCP): the first project of the World Climate Research Programme, Bull. Am. Meteorol. Soc., 64, 779-784 (1983). https://doi.org/10.1175/1520-0477-64.7.779   DOI
14 Singh D, Singh RP, The role of cosmic rays in the Earth's atmospheric processes, Pramana. J. Phys. 74, 153-168 (2010). https://doi.org/10.1007/s12043-010-0017-8   DOI
15 Snow-Kropla EJ, Pierce JR, Westervelt DM, Trivitayanurak W, Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties, Atmos. Chem. Phys. 11, 4001-4013 (2011). https://doi.org/10.5194/acp-11-4001-2011   DOI
16 Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A 20, 6699-6701 (2005). https://doi.org/10.1142/S0217751X0502985X   DOI
17 Harrison RG, Stephenson DB, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds, Proc. R. Soc. A, 462, 1221-1223 (2006). https://doi.org/10.1098/rspa.2005.1628   DOI
18 Hodges RE, Elsner JB, Evidence linking solar variability with US hurricanes, Int. J. Climatol. 31, 1897-1907 (2011). https://doi.org/10.1002/joc.2196   DOI
19 Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y   DOI
20 Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010   DOI
21 Kazil J, Zhang K, Stier P, Feichter J, Lohmann U, O'Brien K, The present-day decadal solar cycle modulation of Earth's radiative forcing via charged $H_2SO_4/H_2O$ aerosol nucleation, Geophys. Res. Lett. 39, L02805 (2012). https://doi.org/10.1029/2011GL050058
22 Kim JH, Chang HY, Association between solar variability and teleconnection index, J. Astron. Space Sci. 36, 149-157 (2019). https://doi.org/10.5140/JASS.2019.36.3.149   DOI
23 Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in western North Pacific Ocean, J. Astron. Space Sci. 34, 257-270 (2017). https://doi.org/10.5140/JASS. 2017.34.4.257   DOI
24 Kim KB, Kim JH, Chang HY, Do solar cycles share spectral properties with tropical cyclones that occur in the western North Pacific Ocean?, J. Astron. Space Sci. 35, 151-161 (2018). https://doi.org/10.5140/JASS.2018.35.3.151   DOI
25 Kirkby J, Beam measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, European Organization for Nuclear Research (CERN), CERNOPEN-2001-028 (2001).
26 Kolomeets EV, Mukanov JB, Shvartsman YE, 1973. Long-term variations in cosmic rays and solar activity, Proceedings of the 13th International Conference on Cosmic Rays, Denver, CO, 17-30 Aug 1973.
27 Sporer FWG, Vierteljahrsschr. Astron. Ges. Leipzig 22, 323 (1887).
28 Solanki SK, Krivova NA, Haigh JD, Solar irradiance variability and climate, Ann. Rev. Astron. Astrophys. 51, 311-351 (2013). https://doi.org/10.1146/annurev-astro-082812-141007   DOI
29 Solanki SK, Schüssler M, Fligge M, Secular variation of the Sun's magnetic flux, Astron. Astrophys. 383, 706-712 (2002). https://doi.org/10.1051/0004-6361:20011790   DOI
30 Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group i to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, UK).
31 Svensmark H, Bondo T, Svensmark J, Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett. 36, L15101 (2009). https://doi.org/10.1029/2009GL038429   DOI
32 Svensmark H, Enghoff MB, Shaviv NJ, Svensmark J, Increased ionization supports growth of aerosols into cloud condensation nuclei, Nat. Comm. 8, 2199 (2017). https://doi.org/10.1038/s41467.017.02082.2   DOI
33 Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1   DOI
34 Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875   DOI
35 Tinsley BA, Deen GW, Apparent tropospheric response to MeVGeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473   DOI
36 Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3   DOI
37 Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308
38 Carslaw KS, Harrison RG, Kirkby J, Cosmic rays, clouds, and climate, Science 298, 1732-1737 (2002). https://doi.org/10.1126/science.1076964   DOI
39 Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395   DOI
40 Cho IH, Kwak YS, Chang HY, Cho KS, Park YD, et al., Dependence of GCRs influx on the solar North-South asymmetry, J. Atmos. Sol.-Terr. Phys. 73, 1723-1726 (2011). https://doi.org/10.1016/j.jastp.2011.03.007   DOI
41 Dunne EM, Lee LA, Reddington CL, Carslaw KS, No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols, Atmos. Chem. Phys. 12, 11573-11587 (2012). https://doi.org/10.5194/acp-12-11573-2012   DOI
42 Lee S, Yi Y, Pacific equatorial sea surface temperature variation during the 2015 El Nino period observed by advanced veryhigh-resolution radiometer of NOAA satellites, J. Astron. Space Sci. 35, 105-109 (2018). https://doi.org/10.5140/JASS.2018.35.2.105   DOI
43 Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896   DOI
44 Cohen TJ, Sweetser EI, The spectra of the solar cycle and of data for Atlantic tropical cyclones, Nature 256, 295-296 (1975). https://doi.org/10.1038/256295a0   DOI
45 Dickinson RE, Solar variability and the lower atmosphere, Bull. Am. Meteorol. Soc. 56, 1240-1248 (1975). https://doi.org/10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2   DOI
46 Dunne EM, Gorden H, Kurten A, Almeida J, Duplissy J, et al., Global atmospheric particle formation from CERN CLOUD measurements, Science 354, 1119-1124 (2016). https://doi.org/10.1126/science.aaf2649   DOI
47 Oey LY, Chou S, Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades, J. Geophys. Res. Oceans, 121, 5181-5192 (2016). https://doi.org/10.1002/2016JC011777   DOI
48 Maunder EW, Note on the distribution of sun-spots in heliographic latitude, 1874 to 1902, Mon. Not. R. Astron. Soc. 64, 747-761 (1904). https://doi.org/10.1093/mnras/64.8.747   DOI
49 Muraki Y, Application of coupled harmonic oscillator model to solar activity and El Nino phenomena, J. Astron. Space Sci. 35, 75-81 (2018). https://doi.org/10.5140/JASS.2018.35.2.75   DOI
50 Ney EP, Cosmic radiation and the weather, Nature 183, 451-452 (1959). https://doi.org/10.1038/183451a0   DOI
51 Palle Bago E, Butler CJ, The influence of cosmic rays on terrestrial clouds and global warming, Astron. Geophys. 41, 4.18-4.22 (2000). https://doi.org/10.1046/j.1468-4004.2000.00418.x   DOI
52 Kopp G, Fehlmann A, Finsterle W, Harber D, Heuerman K, et al., Total solar irradiance data record accuracy and consistency improvements, Metrologia, 49, S29-S33 (2012). https://doi.org/10.1088/0026-1394/49/2/S29   DOI
53 Perez-Peraza J, Kavlakov S, Velasco V, Gallegos-Cruz A, Azpra-Romero E, et al., Solar, geomagnetic and cosmic ray intensity changes, preceding the cyclone appearances around Mexico, Adv. Space Res. 42, 1601-1613 (2008). https://doi.org/10.1016/j.asr.2007.12.004   DOI
54 Pierce JR, Adams PJ, Efficiency of cloud condensation nuclei formation from ultrafine particles, Atmos. Chem. Phys. 7, 1367-1379 (2007). https://doi.org/10.5194/acp-7-1367-2007   DOI
55 Yu F, Luo G, Effect of solar variations on particle formation and cloud condensation nuclei, Environ. Res. Lett. 9, 045004 (2014). https://doi.org/10.1088/1748-9326/9/4/045004.   DOI
56 Todd MC, Kniveton DR, Short-term variability in satellitederived cloud cover and galactic cosmic rays: an update, J. Atmos. Sol.-Terr. Phys. 66, 1205-1211 (2004). https://doi.org/10.1016/j.jastp.2004.05.002   DOI
57 Usoskin IG, A history of solar activity over millennia, Living Rev. Sol. Phys. 10, 1 (2013). https://doi.org/10.12942/lrsp-2013-1   DOI
58 Wang H, Su W, The ENSO effects on tropical clouds and topof-atmosphere cloud radiative effects in CMIP5 models, J. Geophys. Res. Atmos. 120, 4443-4465 (2015). https://doi.org/10.1002/2014JD022337   DOI
59 Yu F, Luo G, Liu X, Easter RC, Ma X, et al., Indirect radiative forcing by ion-mediated nucleation of aerosol, Atmos. Chem. Phys. 12, 11451-11463 (2012). https://doi.org/10.5194/acp-12-11451-2012   DOI
60 Elsner JB, Jagger TH, United States and Caribbean tropical cyclone activity related to the solar cycle, Geo. Res. Lett. 35, L18705 (2008). https://doi.org/10.1029/2008GL034431   DOI
61 Haigh JD, The sun and the earth's climate, Living Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2   DOI
62 Kane RP, Short-term periodicities in solar indices, Sol. Phys. 227, 155-175 (2005).   DOI
63 Svensmark H, Cosmoclimatology: A new theory emerges, Astron. Geophys. 48, 1.18-1.24 (2007). https://doi.org/10.1111/j.1468-4004.2007.48118.x   DOI
64 Pierce JR, Adams PJ, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?, Geophys. Res. Lett. 36, L09820 (2009). https://doi.org/10.1029/2009GL037946   DOI