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Two mini neutron monitors are installed at Concordia research station (Dome C, Central Antarctica, 75° 06' S, 123° 23' E, 
3,233 m.a.s.l.). The site has unique properties ideal for cosmic ray measurements, especially for the detection of solar 
energetic particles: very low cutoff rigidity < 0.01 GV, high elevation and poleward asymptotic acceptance cones pointing 
to geographical latitudes > 75° S. The instruments consist of a standard neutron monitor and a "bare" (lead-free) neutron 
monitor. The instrument operation started in mid-January 2015. The barometric correction coefficients were computed 
for the period from 1 February to 31 July 2015. Several interesting events, including two notable Forbush decreases on 17 
March 2015 and 22 June 2015, and a solar particle event of 29 October 2015 were registered. The data sets are available at 
cosmicrays.oulu.fi and nmdb.eu.
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1. INTRODUCTION

A neutron monitor is a standard ground-based instrument 

providing continuous measurements of cosmic ray flux 

variations (Dorman 2004). The instrument is a counter 

designed to detect nucleonic components of cascades 

initiated by primary cosmic particles in the atmosphere 

(Simpson 1953; Hatton 1971). The location of a neutron 

monitor is very important because of the energy range and 

directions of accepted particles which depend on their 

rigidities. The Earth's magnetic field causes a shielding 

effect, when cosmic ray particles with a rigidity less than 

the threshold cannot reach the atmosphere at a particular 

geomagnetic latitude (Störmer 1950; Cooke et al. 1991; Smart 

& Shea 2009). The magnetic field affects the trajectories of 

charged particles in the magnetosphere leading to a specific 

set of acceptance cones, i.e., the directions from where the 

site receives particles with given rigidities (McCracken 1962; 

Rao et al. 1963). The thickness of the atmosphere above the 

site defines the strength of a cascade and the efficiency of 

the cosmic ray measurements. High-altitude instruments are 

more sensitive to low-energy cosmic rays than those at sea 

level.

A neutron monitor is an energy-integrating device and 

cannot directly measure the energy spectrum of primary 

particles, but it becomes possible with a network of such 

instruments situated at different geomagnetic latitudes. 

The network is also important for studies of cosmic ray 
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anisotropy (Bieber & Evenson 1995; Mishev et al. 2014). 

Neutron monitors of the existing network have acceptance 

cones mostly in the equatorial regions, with hardly any 

sensitive to the polar directions.

Here we report a new cosmic ray station with two compact 

neutron monitors. It is hosted at Concordia research station 

(Antarctica) and significantly expands the capability of the 

present worldwide neutron monitor network.

2. THE SITE AND ITS SENSITIVITY TO COSMIC 
RAYS

Two neutron monitors have been recently installed 

at Concordia research station located at Dome C on the 

Antarctic Plateau (75° 06' S, 123° 23' E, Fig. 1) at height of 

3,233 Metres Above Sea Level (m.a.s.l.). The site has an 

almost zero rigidity cutoff (R < 0.01 GV), i.e., no geomagnetic 

shielding even for low-energy particles. The station at Dome 

C has several advantages over other cosmic ray stations in 

Antarctica that host neutron monitors. The thickness of the 

atmosphere above the site defines the efficiency and energy 

range of detection of cosmic rays (Dorman 2004). The high 

elevation of Dome C means that the new neutron monitors 

have enhanced sensitivity to low-energy cosmic rays, which 

is particularly important for studies of solar energetic 

particles. The majority of the other Antarctic stations are 

situated near the coast at low altitudes. (Fig. 1). The three 

stations at Dome C, at South Pole, and SANAE IV, have 

the highest sensitivity to low-energy particles due to their 

elevations (3,233 m, 2,835 m, and 856 m.a.s.l., respectively), 

with the first two being the most suitable for measurements 

of solar energetic particles.

Fig. 2 shows the acceptance cones for several stations at 

high geomagnetic latitudes. The cones as well as the cutoff 

rigidities were computed using the Geant4 Monte-Carlo tool 

for simulations of cosmic ray transport and interactions with 

Earth, Mars and Mercury MAGNETOCOSMICS (Desorgher 

et al. 2005). Our computation was based on the International 

Geomagnetic Reference Field (IGRF, Macmillan et al. 2003) 

as the internal field, and the semiempirical model of the 

external geomagnetic field Tsyganenko-89 (Tsyganenko 

1989), as validated by Kudela et al. (2008) and Nevalainen et 

al. (2013). We assumed quiet geomagnetic conditions with 

the index Kp = 1 and the epoch of 1 January 2010.

Fig. 1. Cosmic ray stations in Antarctica. A modified image of ©Heraldry/
Wikimedia Commons/GFDL.

Fig. 2. Asymptotic acceptance cones for several selected cosmic ray stations at high geomagnetic latitudes . The digits indicate 
particle rigidities for the cones in GV. Modified images of ©Gringer/Wikimedia Commons/GFDL. 
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Although the South Pole and Dome C stations are 

located on the Antarctic Plateau, they have quite different 

asymptotic acceptance cones (Fig. 2). Dome C has the most 

poleward acceptance cone among all the stations: particles 

with rigidities between 1 and 20  GV are coming from 

latitudes between -75° and -90°. Other Antarctic stations, 

including South Pole, receive particles from a wider range of 

latitudes between -20° and -85°. Since less energetic cosmic 

rays are more numerous, most of the particles detected at 

those stations are coming from the equatorial plane, while 

Dome C has its cones almost totally polar-oriented even for 

the low-energy part of the spectrum.

3. THE INSTRUMENTS

A standard neutron monitor is designed as a counter 

surrounded with consecutive layers of a light-element 

material, usually polyethylene, and lead (Fig. 3), able 

to detect mostly secondary nucleonic components of a 

cosmic-ray-induced cascade (Simpson et al. 1953; Simpson 

2000). The outer polyethylene reflector shields thermal 

nucleons and is transparent to cascade neutrons, which 

are multiplied in the lead producer. The inner polyethylene 

moderator slows nuclei down in order to enhance their 

registration probability. Finally, multiplied and decelerated 

neutrons reach a proportional counter where they are 

detected via a voltage pulse. A neutron monitor without a 

lead producer layer is termed "bare" or lead-free and has 

enhanced sensitivity to low-energy nuclei and consequently, 

to weaker cascades and softer primary particles, but at the 

cost of reduced total instrument efficiency (Vashenyuk et al. 

2007). 

The instruments installed at Concordia research station 

include a standard and a "bare" single-counter mini 

neutron monitors (Fig. 4) built by the North-West University 

(Potchefstroom, South Africa) and described by Krüger & 

Moraal (2013). Both devices are identical except for the lead 

producer that causes their different response. This setup can 

provide a rough spectral estimate of detected Ground Level 

Enhancements (GLE) caused by solar energetic particles 

(Mischke et al. 1973, Vashenyuk et al. 2007, Oh et al. 2012), 

whose spectra are difficult to reconstruct (Tylka & Lee 2006).

The instruments are relatively compact compared to a 

full-size NM64 neutron monitor (Carmichael 1968). Each 

of them has one BF3-filled counter LND2043 with a gas 

pressure of 933 hPa. Accordingly, such a counter has triple 

the efficiency (per unit area) as compared to a standard 

NM64 neutron monitor with a gas pressure of 300 hPa. As 

a result, the standard mini neutron monitor at Concordia 

has a count rate similar to a single NM64 detector (at sea 

level) while being only 1/3 of it in size and weight. The 

setup is located in the heated physics shelter at Concordia 

research station. The building is elevated above the 

surface at height of approximately 2 m, which significantly 

reduces the influence of the ice moderating effect on the 

count rate (Rühm et al. 2012; Cheminet et al. 2014). The 

neutron monitors are able to operate as independent units 

without an external computer. Nevertheless, in the present 

configuration they are connected to a local server, which 

stores the data files and sends them daily to a server in the 

Sodankylä Geophysical Observatory of the University of 

Oulu, Finland via the data transfer system Hermes.

4. DATA

According to the traditional short naming of cosmic 

ray stations, the standard-design neutron monitor and 

the "bare" one are designated as "DOMC" and "DOMB", 

respectively. Instrument operation was started in mid-

January 2015. Fig. 5 shows the DOMC and DOMB count 

Fig. 4. Standard (RHS, white front panel) and "bare" (LHS, black front 
panel) mini neutron monitors installed in the physics shelter at Concordia 
research station.Fig. 3. Schematic of the design of a standard neutron monitor.
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rates, as well as data from the Oulu neutron monitor 9NM64 

used as a reference. The data is corrected for atmospheric 

pressure using the standard formula:

 Ccorrected = Craw exp(K(P
0
 - P)) (1)

where Ccorrected and Craw are the corrected and raw count rates, 

respectively, K is the barometric correction coefficient, P 

is the measured pressure, and P0 is the reference pressure. 

The coefficients were computed for the period of 1 February 

through 31 July 2015 using the reference pressure P0 = 650 

mbar:

 KDOMC = -0.00754±0.00068 mbar-1 (2)

 KDOMB = -0.00707±0.00042 mbar-1 (3)

These are consistent with the barometric correction 

coefficients for other neutron monitors (e.g., -0.0074 mbar-1  

for the neutron monitor in Oulu). The standard (DOMC) 

and "bare" (DOMB) mini neutron monitors have pressure-

corrected count rates of approximately 16.5 and 4.3 counts/

s on average, respectively. During the first 9 months of 

operation, two mid-size Forbush decreases were registered 

by the neutron monitors on 17 March 2015 and 23 June 

2015. The Forbush decrease in March (Fig. 6) was observed 

as 8% drops in the DOMC and DOMB count rates, and 

6% in the OULU count rate. Its recovery phase lasted 

approximately 8 days. The Forbush decrease in June (Fig. 

7) was stronger and manifested itself as 12%, 14% and 10% 

decreases in the DOMC, DOMB, and OULU count rates, 

respectively. It had a classical two-step decrease shape and 

lasted for approximately 7 days. The "bare" instrument had 

Fig. 6. Forbush decrease at 17 March 2015 registered by the standard-design neutron monitor at Dome C (DOMC, top 
panel), the "bare" neutron monitor (DOMB, middle panel), and the Oulu neutron monitor (bottom panel). The count rates are 
corrected for atmospheric pressure. The level before the Forbush decrease is set as 100%.

Fig. 5. Count rates of the standard-design neutron monitor at Dome C (DOMC, top panel), "bare" neutron monitor (DOMB, 
middle panel) and the Oulu neutron monitor (bottom panel). The values are corrected for atmospheric pressure and filtered 
with a rectangular 24 hour window. The 100% level corresponds to the maximum count rate for the time interval.
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a slightly stronger response to the events than the standard 

one as expected due to its higher sensitivity to strongly 

modulated low-energy particles during the events.

Two other interesting events were observed with the 

instruments at Dome C. At approximately 13:00 UT, 7 June 

2015 there was an increase of the DOMC and DOMB count 

rates of approximately +6% which lasted 5 hours (Fig. 8). It was 

registered by several neutron monitors from the worldwide 

network, mostly situated in Antarctica, however the OULU 

instrument did not show a response. The nature of the event 

is not clear so far, and is still in discussion in the scientific 

community. At about 3:00 UT, 29 October 2015 the satellite 

system GOES registered an increase in the energetic (> 100 

MeV) proton flux. This was a solar energetic particle event 

observed on the ground by the South Pole neutron monitors as 

well as the "bare" neutron monitor DOMB. The enhancement 

was small, barely distinguishable over the background and is 

still under discussion as to whether it was a GLE.

The neutron monitors data sets are available at the Oulu 

Cosmic Ray Station website (Sodankylä Geophysical Observatory, 

University of Oulu, cosmicrays.oulu.fi) and the Neutron Monitor 

Database website (nmdb.eu).

5. CONCLUSIONS

Two new mini neutron monitors, a standard-design and 

a "bare", disignated as “DOMC” and “DOMB” respectively, 

have been installed at high-altitude Concordia research 

station in Antarctica. The neutron monitors started their 

operation in mid-January 2015. Corresponding barometric 

correction coefficients have been derived. During the period 

Fig. 7. Forbush decrease at 22 June 2015 registered by the standard-design neutron monitor at Dome C (DOMC, top 
panel), the "bare" neutron monitor (DOMB, middle panel), and the Oulu neutron monitor (bottom panel). The count rates are 
corrected for atmospheric pressure. The level before the Forbush decrease is set as 100%.

Fig. 8. The enhancement of the neutron monitor count rates on 7 June 2015. The standard-design neutron monitor at Dome C 
(DOMC, top panel), the "bare" neutron monitor (DOMB, middle panel), and the Oulu neutron monitor (OULU, bottom panel). The 
count rates are corrected for atmospheric pressure. The level before the event is set as 100%. The event is highlighted in grey.
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of operation several interesting events, including two mid-

size Forbush decreases and two count rate enhancements, 

were registered, with both the instruments showing a good 

response. The data sets are available at cosmicrays.oulu.fi 

and nmdb.eu.
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