• Title/Summary/Keyword: Cosmic ray

Search Result 183, Processing Time 0.035 seconds

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.93-103
    • /
    • 2017
  • We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.

TRACING BRIGHT AND DARK SIDES OF THE UNIVERSE WITH X-RAY OBSERVATIONS

  • SUTO YASUSHI;YOSHIKAWA KOHJI;DOLAG KLAUS;SASAKI SHIN;YAMASAKI NORIKO Y.;OHASHI TAKAYA;MITSUDA KAZUHISA;TAWARA YUZURU;FUJIMOTO RYUICHI;FURUSHO TAE;FURUZAWA AKIHIRO;ISHIDA MANABU;ISHISAKI YOSHITAKA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.387-392
    • /
    • 2004
  • X-ray observations of galaxy clusters have played an important role in cosmology, especially in determining the cosmological density parameter and the fluctuation amplitude. While they represent the bright side of the universe together with the other probes including the cosmic microwave background and the Type Ia supernovae, the resulting information clearly indicates that the universe is dominated by dark components. Even most of cosmic baryons turns out to be dark. In order to elucidate the nature of dark baryons, we propose a dedicated soft-X-ray mission, DIOS (Diffuse Intergalactic Oxygen Surveyor). Recent numerical simulations suggest that approximately 30 to 50 percent of total baryons at z = 0 take the form of the warm-hot intergalactic medium (WHIM) with $10^5K < T < 10^7K $which has evaded the direct detection so far. The unprecedented energy resolution (${\~} 2eV$) of the XSA (X-ray Spectrometer Array) on-board DIGS enables us to identify WHIM with gas temperature $T = 10^6 {\~} 10^7K$ and overdensity $\delta$ = 10 ${\~}$ 100 located at z < 0.3 through emission lines of OVII and OVIII. In addition, WHIMs surrounding nearby clusters are detectable with a typical exposure time of a day, and thus constitute realistic and promising targets for DIOS.

Study on the Dosimetry and Assessment of Terrestrial Radiation Exposure (지각 방사선에 의한 피폭선량측정 및 해석)

  • Jun, Jae-Shik;Oh, Hi-Peel;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.87-100
    • /
    • 1990
  • For the quantitative evaluation and assessment of radiation exposure from terrestrial component of natural environmental radiation, successive thermoluminescence dosimetry and periodical in-situ gamma ray spectrometry were carried out for a period of 24 months. LiF PTFE dise TLDs and $3&{\phi}{\times}3'$cylindrical NaI(Tl)scintill ation detector in association of portable multichannel analyzer (4096 ch) were used in this study. The doses measured were evaluated and assessed in terms of effective dose equivalent. As a concomitant output, the dose equivalent due to ionizing component of cosmic ray was able to be evaluated. According to the results obtained in terms of variance weighted mean, the annual effective dose equivalents of terrestrial gamma ray and cosmic ray ionizing component in Taejeon area came out to be $564{\pm}4\;{\mu}Sv(64.8{\pm}0.5nSv{\cdot}h^{-1}$ and $300{\pm}2\;{\mu}Sv(34.3{\pm}0.2nSv{\cdot}h^{-1}$, respectively, which are reasonable comparably with that appeared in UNSCEAR Report[28]as per caput annual effective dose equivalent in 'areas of normal background radiation'.

  • PDF

SECONDARY ELECTRONS IN CLUSTERS OF GALAXIES AND GALAXIES

  • HWANG CHORNG- YUAN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.461-463
    • /
    • 2004
  • We investigate the role of secondary electrons in galaxy clusters and in ultra-luminous infrared galaxies (ULIGs). The radio emission in galaxy clusters and ULIGs is believed to be produced by the synchrotron radiation of relativistic electrons. Nonetheless, the sources of these relativistic electrons are still unclear. Relativistic secondary electrons can be produced from the hadronic interactions of cosmic-ray nuclei with the intra-cluster media (ICM) of galaxy clusters and the dense molecular clouds of ULIGs. We estimate the contribution of the secondary electrons in galaxy clusters and ULIGs by comparing observational results with theoretical calculations for the radio emission in these sources. We find that the radio halos of galaxy clusters can not be produced from the secondary electrons; on the other hand, at least for some ULIGs, the radio emission can be dominated by the synchrotron emission of the secondary electrons.

Diffusion of Cosmic Rays in a Multiphase Interstellar Medium Shocked by a Supernova Remnant Blast Wave

  • Roh, Soonyoung;Inutsuka, Shu-ichiro;Inoue, Tsuyoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2015
  • Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations of gamma rays from the vicinity of SNRs have shown strong evidence that Galactic CR protons are accelerated by the shock waves of the SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyze the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the CRs diffusion at a length scale of order a few pc, and show the Richtmeyer-Meshkov instability can provide enough turbulence downstream of the shock to make the diffusion coefficient close to the Bohm level for energy larger than 30 TeV for a realistic interstellar medium.

  • PDF

NONTHERMAL RADIATION FROM RELATIVISTIC ELECTRONS ACCELERATED AT SPHERICALLY EXPANDING SHOCKS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks based on simple DSA models in the test-particle regime.

Diffusive Shock Acceleration with Self-Consistent Injection

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.293-295
    • /
    • 2001
  • A numerical scheme that incorporates a self-consistent cosmic-ray (CR, hereafter) injection model into the combined gas dynamics and CR diffusion-convection code has been developed. The hydro/CR code can follow in a very cos-effective way the evolution of CR modified shocks by adopting subzone shock-tracking and multi-level Adaptive Mesh Refinement techniques. The injection model is based on interactions of the suprathermal particles with self-generated MHD waves in quasi-parallel shocks. The particle injection is followed numerically by filtering the diffusive flux of suprathermal particles across the shock to upstream region according to a velocity-dependent transparency function, which represents the fraction of leaking suprathermal particles. In the strong shock limit of Mach numbers $\ge$20, significant physical processes such as the injection and acceleration seem to become independent of M, while they are sensitively dependent on M for M < 10. Although some particles injected early in the evolution continue to be accelerated to higher energies, the postshock CR pressure reaches a time asymptotic value due to balance between acceleration and diffusion of the CR particles.

  • PDF

DETECTOR SIMULATIONS FOR THE COREA PROJECT (COREA 프로젝트를 위한 검출기 모의실험)

  • Lee, Sung-Won;Kang, Hye-Sung
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The COREA (COsmic ray Research and Education Array in Korea) project aims to build a ground array of particle detectors distributed over Korean Peninsular, through collaborations of high school students, educators, and university researchers, in order to study the origin of ultra high energy cosmic rays. COREA array will consist of about 2000 detector stations covering several hundreds of $km^2$ area at its final configuration and detect electrons and muons in extensive air-showers triggered by high energy particles. During the intial phase COREA array will start with a small number of detector stations in Seoul area schools. In this paper, we have studied by Monte Carlo simulations how to select detector sites for optimal detection efficiency for proton triggered air-showers. We considered several model clusters with up to 30 detector stations and calculated the effective number of air-shower events that can be detected per year for each cluster. The greatest detection efficiency is achieved when the mean distance between detector stations of a cluster is comparable to the effective radius of the air-shower of a given proton energy. We find the detection efficiency of a cluster with randomly selected detector sites is comparable to that of clusters with uniform detector spacing. We also considered a hybrid cluster with 60 detector stations that combines a small cluster with ${\Delta}{\iota}{\approx}100m$ and a large cluster with ${Delta}{\iota}{\approx}1km$. We suggest that it can be an ideal configuration for the initial phase study of the COREA project, since it can measure the cosmic rays with a wide range energy, i.e., $10^{16}eV{\leq}E{\leq}10^{19}eV$, with a reasonable detection rate.

VOIDS LENSING OF THE CMB AT HIGH RESOLUTION

  • SANGKA, ANUT;SAWANGWIT, UTANE;SANGUANSAK, NUANWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.397-399
    • /
    • 2015
  • Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius $RV_{,eff}=35h^{-1}Mpc$ with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.