Browse > Article
http://dx.doi.org/10.5303/JKAS.2015.48.1.9

NONTHERMAL RADIATION FROM RELATIVISTIC ELECTRONS ACCELERATED AT SPHERICALLY EXPANDING SHOCKS  

Kang, Hyesung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of The Korean Astronomical Society / v.48, no.1, 2015 , pp. 9-20 More about this Journal
Abstract
We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks based on simple DSA models in the test-particle regime.
Keywords
acceleration of particles; cosmic rays; galaxies: clusters: general; shock waves;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. of Modern Physics D. 23, 30007
2 Akamatsu, H., & Kawahara, H. 2013, Systematic X-Ray Analysis of Radio Relic Clusters with Suzaku, PASJ, 65, 16   DOI
3 Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147   DOI
4 Bell, A. R. 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MNRAS, 353, 550   DOI   ScienceOn
5 Riquelme, M. A., & Spitkovsky, A. 2009, Nonlinear Study of Bell’s Cosmic Ray Current-Driven Instability, ApJ, 694, 626   DOI
6 van Weeren, R., Röttgering, H. J. A., Brüggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347   DOI   ScienceOn
7 van Weeren, R., Hoeft, M., Röttgering, H. J. A., Brüggen, M., Intema, H. T., & van Velzen, S. 2011, A Double Radio Relic in the Merging Galaxy Cluster ZwCl 0008.8+5215, A&A, 528, A38
8 Petrosian, V. 2001, On the Nonthermal Emission and Acceleration of Electrons in Coma and Other Clusters of Galaxies, ApJ, 557, 560   DOI
9 Vasyliunas, V. M. 1968, A Survey of Low-Energy Electrons in the Evening Sector of the Magnetosphere with OGO 1 and OGO 3, JGR, 73, 2839   DOI
10 Ogrean, G. A., & Brüggen, M. 2013, First X-Ray Evidence for a Shock at the Coma Relic, MNRAS, 433, 1701   DOI
11 Pierrard, V., & Lazar, M. 2010, Kappa Distributions: Theory and Applications in Space Plasmas, Sol. Phys., 265, 153
12 Pinzke, A., Oh, S. P., & Pfrommer, C. 2013, Giant Radio Relics in Galaxy Clusters: Reacceleration of Fossil Relativistic Electrons?, MNRAS, 435, 1061   DOI
13 Riquelme, M. A., & Spitkovsky, A. 2011, Electron Injection by Whistler Waves in Non-relativistic Shocks, ApJ, 733, 63   DOI
14 Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, Cosmological Shock Waves and Their Role in the LargeScale Structure of the Universe, ApJ, 593, 599   DOI
15 Sarazin, C. 1999, The Energy Spectrum of Primary CosmicRay Electrons in Clusters of Galaxies and Inverse Compton Emission, ApJ, 520, 529   DOI
16 Schlickeiser, R. 2002, Cosmic Ray Astrophysics (Berlin: Springer)
17 Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfvén Waves on Particles, MNRAS, 172, 557   DOI
18 Skillman, S. W., Hallman, E. J., O’Shea, W., Burns, J. O., Smith, B. D., & Turk, M. J. 2011, Galaxy Cluster Radio Relics in Adaptive Mesh Refinement Cosmological Simulations: Relic Properties and Scaling Relationships, ApJ, 735, 96   DOI
19 Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97   DOI
20 Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246   DOI   ScienceOn
21 Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337   DOI
22 Kang, H.,& Ryu, D. 2013, Diffusive Shock Acceleration at Cosmological Shock Waves, ApJ, 756, 97
23 Kang, H., Ryu, D., Cen, R., & Ostriker, J. P. 2007, Cosmological Shock Waves in the Large-Scale Structure of the Universe: Nongravitational Effects, ApJ, 669, 729   DOI
24 Kang, H., Vahe, P., Ryu, D., & Jones, T. W. 2014, Injection of κ-like Suprathermal Particles into Diffusive Shock Acceleration, ApJ, 788, 141   DOI
25 Lang, K. R. 1999, Astrophysical Formulae, Vol. I: Radiation, Gas Processes and High Energy Astrophysics, Springer
26 Lucek, S. G., & Bell, A. R. 2000, Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming, MNRAS, 314, 65   DOI   ScienceOn
27 Malkov M. A., & Drury, L.O’C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429   DOI   ScienceOn
28 Markevitch, M., Gonzalez, A. H., David, L., Vikhlinin, A., Murray, S., Forman, W., Jones, C., & Tucker, W. 2002, A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E 0657-56, ApJ, 567, 27   DOI
29 Nuza, S. E., Hoeft, M., van Weeren, R. J., Gottlöber, S., & Yepes, G. 2012, How Many Radio Relics Await Discovery?, MNRAS, 420, 2006   DOI   ScienceOn
30 Caprioli, D. 2012, Cosmic-Ray Acceleration in Supernova Remnants: Non-Linear Theory Revised, JCAP, 7, 38
31 Drury, L. O’C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973   DOI   ScienceOn
32 Caprioli, D., & Sptikovsky, A. 2014a, Simulations of Ion Acceleration at Non-relativistic Shocks. I. Acceleration Efficiency, ApJ, 783, 91   DOI
33 Caprioli, D., & Sptikovsky, A. 2014b, Simulations of Ion Acceleration at Non-relativistic Shocks. II. Magnetic Field Amplification, ApJ, 794, 46   DOI
34 Caprioli, D., Pop, A. R., & Sptikovsky, A. 2015, Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks, ApJ, 798, 28
35 Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev., 20, 54
36 Guo, F., & Giacalone, J. 2013, The Acceleration of Thermal Protons at Parallel Collisionless Shocks: ThreeDimensional Hybrid Simulations, ApJ, 773, 158   DOI
37 Guo, X., Sironi, L., & Narayan, R. 2014, Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism, ApJ, 793, 153
38 Jones, T. W., O’dell, S. L., & Stein, W. A. 1974, Physics of Compact Nonthermal Sources. I. Theory of Radiation Processes, ApJ, 188, 353   DOI
39 Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 39
40 Kang, H. 2012, Diffusive Shock Acceleration with Magnetic Field Amplification and Alfvénic Drift, JKAS, 45, 127
41 Vazza, F., Brunetti, G., & Gheller, C. 2009, Shock Waves in Eulerian Cosmological Simulations: Main Properties and Acceleration of Cosmic Rays, MNRAS, 395, 1333   DOI   ScienceOn