• Title/Summary/Keyword: Corynebacterium glutamicum

Search Result 141, Processing Time 0.026 seconds

Single-Base Genome Editing in Corynebacterium glutamicum with the Help of Negative Selection by Target-Mismatched CRISPR/Cpf1

  • Kim, Hyun Ju;Oh, Se Young;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1583-1591
    • /
    • 2020
  • CRISPR/Cpf1 has emerged as a new CRISPR-based genome editing tool because, in comparison with CRIPSR/Cas9, it has a different T-rich PAM sequence to expand the target DNA sequence. Single-base editing in the microbial genome can be facilitated by oligonucleotide-directed mutagenesis (ODM) followed by negative selection with the CRISPR/Cpf1 system. However, single point mutations aided by Cpf1 negative selection have been rarely reported in Corynebacterium glutamicum. This study aimed to introduce an amber stop codon in crtEb encoding lycopene hydratase, through ODM and Cpf1-mediated negative selection; deficiency of this enzyme causes pink coloration due to lycopene accumulation in C. glutamicum. Consequently, on using double-, triple-, and quadruple-base-mutagenic oligonucleotides, 91.5-95.3% pink cells were obtained among the total live C. glutamicum cells. However, among the negatively selected live cells, 0.6% pink cells were obtained using single-base-mutagenic oligonucleotides, indicating that very few single-base mutations were introduced, possibly owing to mismatch tolerance. This led to the consideration of various target-mismatched crRNAs to prevent the death of single-base-edited cells. Consequently, we obtained 99.7% pink colonies after CRISPR/Cpf1-mediated negative selection using an appropriate single-mismatched crRNA. Furthermore, Sanger sequencing revealed that single-base mutations were successfully edited in the 99.7% of pink cells, while only two of nine among 0.6% of pink cells were correctly edited. The results indicate that the target-mismatched Cpf1 negative selection can assist in efficient and accurate single-base genome editing methods in C. glutamicum.

Molecular Cloning of the Arginine Biosynthetic Genes from Corynebacterium glutamicum

  • Chun, Jae-Shick;Jung, Sam-Il;Ko, Soon-Young;Park, Mee-Young;Kim, Soo-Young;Lee, Heung-Shick;Cheon, Choong-Ill;Min, Kyung-Hee;Lee, Myeong-Sok
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.355-362
    • /
    • 1996
  • Complementation cloning of the argC, E, B, D, F, and G genes in Corynebacterium glutamicum was done by transforming the genomic DNA library into the corresponding arginine auxotrophs fo Escherichia coli. Recombinant plasmids containing 6.7 kb and 4.8kb fragments complementing the E. coli argB mutant were also able to complement the E. coli argC, E, A, D, and F mutants, indicating the clustered organization of the arginine biosynthetic genes within the cloned DNA fragments. The insert DNA fragments in the recombinant plasmids, named pRB1 AND pRB2, were physically mapped with several restriction enzymes. By further subcloning the entire DNA fragment containing the functions and by complementation analysis, we located the arg genes in the order of ACEBDF on the restriction map. We also determined the DNA nucleotide sequence of the fragment and report here the sequence of the argB gene. When compared to that with the mutant strain, higher enzyme activity of N-acetylglutamate kinase was detected in the extract of the mutant carrying the plasmid containing the putative argB gene, indicating that the plasmid contains a functional argB gene. Deduced amino acid sequence of the argB gene shows 45%, 38%, and 25% identity to that from Bacillus strearothermophilus, Bacillus substilus, and E. coli respectively. Our long term goal is genetically engineering C. glutamicum which produces more arginine than a wild type strain does.

  • PDF

Construction of a Corynebacteriurn glutarnicum-Escherichicr coli Shuttle Vector and Cloning the Homoserine ehydrogenase Gene from C. glutamicum (Corynebacterium glutamicum-Escherichia coli Shuttle Vector 개발과 C.glutamicum 의 Homoserine Dehydrogenase Gene Cloning)

  • 최신건;박종현;신현경
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 1991
  • A 7.5 kilobases hybrid plasmid, designated as pCE1301, was constructed by combining Eschurichia cwli plasmid pBELl which carries the kanamycin resistance gene of Tn5 with a cryptic plasmid, pSRl of Corynebacterium glutamicum. pCE1301 was transformed C. glutaicum by PEG-mediated protoplast method and its transformation efficiency was about $3.0\times 10^3$ transformants per $\mu g$ of the hybrid plasmid DNA. The physical map reveals that pCE1301 has single restriction sites for SalI and EcoRl, respectively. 'The kanamycin resistance of pCE1301 was stably maintained in C. glutamicum up to 25 generations and any segregation was not detected. pCI31301 was also introduced into Brevibacterium flavum and E coil, and replicated in those strains. pCE1301 was proved to be useiul in cloning the homoscrine dehydrogenase gene from C. glutamicum.

  • PDF

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.

Intraspecific Protoplast Fusion of Brevibacterium and Intergeneric Protoplast Fusion between Brevibacterium flavum and Corynebacterium glutamicum and the Metabolic Control of L-Lysine Biosynthesis in Improved Bacterial Strains (Brevibacterium flavum의 동종간 및 Corynebacterium glutamicum과의 이속간 원형질체 융합 및 개량균주의 L-Lysine 생합성의 대사제어)

  • Park, Chung;Im, Beon-Sam;Jeon, Moon-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.104-111
    • /
    • 1987
  • As a trial method of breeding L-lysine producing strains, the intraspecific protoplast fusion bet-ween Brevibacterium flavum ATCC 21528R and Brevibacterium flavum ATCC 21529S and the intergeneric protoplast fusion between Brevibacterium flavum ATCC 21528R and Corynebacterium glutamicum ATCC 13058S were performed. The optimum conditions for protoplast formation of these strains were examined and the effect of plasma expander on regeneration and/or fusion was also observed. Both fusants No. CH23 and No. CH4l showed higher productivity of L-lysine than those of parental cells under the optimum cultural conditions at a rate of 21% and 8.9%, respectively. And, activity of several enzymes in L-lysine biosynthetic pathway including aspartokinase, a rate-limiting enzyme, was determined. Besides, metabolic control mechanism of L-lysine biosynthesis in fusant No. CH23 and in No. CH41 was investigated to compare with that of parental strains.

  • PDF

Continuous Fermentationof L-Lysine by Immobilized Corynebacterium glutamicum (Corynebacterium glutamicum 고정화균체에 의한 L-라이신 연속발효)

  • 이인선;조정일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.322-327
    • /
    • 1994
  • For the improvement of L-lysine productivity, development of the continuous fermentation system by a bioreactor assembly was attempted. Primarily, optimal conditions on the whole cell immobilization of Corynebacterium glutamicum ATCC21514 were studied and 76.2% of immobilization ratio was obtained when the cells were entrapped with 4% k-carrageenan showing 4.0kg gel strength. A bioreactor system was set up using the immobilized cells was applied for the continuous production of L-lysine. The results obtained under the optimum conditions were compared with those of the batchwise fermentation. Experimental results obtained from 14 day continuous fermentation showed 36.7% of sugar conversion to L-lysine while the productivity of L-lysine was disclosed as 4.96mg/ml mg-dry cell weight /hr which is 2.5times and 4.1 times higher than those of the batchwise fermentation by the intact cells and by the immobilized cells, respectively.

  • PDF

L-Lysine Production by 6-Azauracil Resistant Mutant of Corynebacterium glutamicum (6-Azaumcil 내성을 지닌 Corynebacterium glutamicum 변이주에 의한 L-Lysine의 생산)

  • 신현철;김성준전영중이재흥
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.372-377
    • /
    • 1994
  • To improve L-lysine yield, pyrimidine base analogue(6-azauracil)-resistant mutants were isolated from Corynebacterium glutamicum KFCC10672 Among them the best producer, C. glutamicum CH0516, was selected and tested for L-lysine production in a $7\ell$ fermentor. It was found that the product yield obtained with C. glutamicum CH0516 was higher than that of the parent strain by 3%. In order to elucidate the gain in productivity with the 6-azauracil-resistant mutant enzymatic kinetic parameters such as aspartokinase(AKase) and aspartate carbamoyltransferase (ATCase) were measured. The Km values of AKase with C. glutamicum KFCC10672 and CH0516 were 200.0 mM and 166.7 mM and those of ATCase were 0.13 mM and 0.27 mM, respectively. However, the specific enzyme activities of AKase of C. glutamlcum KFCC10672 and CH0516 were $3.89{\times}10^{-1}$ units/mg and $4.78{\times}10^{-1}$ units/mg, and those of ATCarse were 2.20 units/mg and 1.84 units/mg, respectively. It appears that some increase in product yield with C. gluramicum CH0516 is likely due to the increased Akase activity and decreased ATCase activity.

  • PDF

Biochemical Analysis on the Parallel Pathways of Methionine Biosynthesis in Corynebacterium glutamicum

  • Hwang, Byung-Joon;Park, Soo-Dong;Kim, Youn-Hee;Kim, Pil;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1010-1017
    • /
    • 2007
  • Two alternative pathways for methionine biosynthesis are known in Corynebacterium glutamicum: one involving transsulfuration (mediated by metB and metC) and the other involving direct sulfhydrylation (mediated by metY). In this study, MetB (cystathionine ${\gamma}-synthase$) and MetY (O-acetylhomoserine sulfhydrylase) from C. glutamicum were purified to homogeneity and the biochemical parameters were compared to assess the functional and evolutionary importance of each pathway. The molecular masses of the native MetB and MetY proteins were measured to be approximately 170 and 280 kDa, respectively, showing that MetB was a homotetramer of 40-kDa subunits and MetY was a homohexamer of 45-kDa subunits. The $K_m$ values for the O-acetylhomoserine catalysis effected by MetB and MetY were 3.9 and 6.4 mM, and the maximum catalysis rates were $7.4\;(k_{cat}=21\;S^{-1})\;and\;6.0\;(k_{cat}=28\;S^{-1})\;{\mu}mol\;mg^{-1}\;min^{-1}$, respectively. This suggests that both MetB and MetY can be comparably active in vivo. Nevertheless, the $K_m$ value for sulfide ions by MetY was 8.6mM, which was too high, considering the physiological condition. Moreover, MetB was active at a broad range of temperatures $(30\;and\;65^{\circ}C)$ and pH (6.5 and 10.0), as compared with MetY, which was active in a range from 30 to $45^{\circ}C$ and at pH values from 7.0 to 8.5. In addition, MetY was inhibited by methionine, but MetB was not. These biochemical data may provide insight on the role of the parallel pathways of methionine biosynthesis in C. glutamicum with regard to cell physiology and evolution.

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum (재조합 Corynebacterium glutamicum으로부터 헴첼 생산에 미치는 프로모터의 효과)

  • Yang, Hyungmo;Kim, Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.

Isolation and Analysis of the argG Gene Encoding Argininosuccinate Synthetase from Corynebacterium glutamicum

  • Ko, Soon-Young;Kim, Sei-Hyun;Lee, Heung-Shick;Lee, Myeong-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.949-954
    • /
    • 2003
  • The argG gene of Corynebacterium glutamicum encoding argininosuccinate synthetase (EC6345) was cloned and sequenced. The gene was cloned by heterologous complementation of an Escherichia coli arginine auxotrophic mutant (argG/sup -/). The cloned DNA fragment also complements E. coli argD, argF, and argH mutants, suggesting a clustered organization of the genes in the chromosome. The coding region of the argG gene is 1,206 nucleotides long with a deduced molecular weight of about 44 kDa, comparable with the predicted size of the expressed protein on the SDS-PAGE. Computer analysis revealed that the amino acid sequence of the argG gene product had a high similarity to that of Mycobacterium tuberculosis and Streptomyces clavuligerus. Two conserved sequence motifs within the ArgG appear to be ATP-binding sites which correspond to 2 of the 3 conserved regions found in sequences of all known argininosuccinate synthetases.