• Title/Summary/Keyword: Corrugation height

Search Result 15, Processing Time 0.031 seconds

Heat Transfer and Pressure Drop Characteristic of Plate Heat Exchanger with Corrugation Height for District Cooling System (지역냉방 시스템용 판형 열교환기의 주름높이에 따른 열전달 및 압력강하 특성)

  • Kwon, Oh-Kyung;Kim, Hyeon-Joong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.23-29
    • /
    • 2011
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the plate heat exchanger with corrugation height by numerical analysis. Plate heat exchanger of three types was designed, which was corrugation height 3.1mm, 2.8mm and 2.5mm. The plate heat exchanger was numerically investigated for Reynolds number in a range of 950~3,380. The temperatures of the hot side were performed at $14.5^{\circ}C$ while that of the cold side was conducted at $4.5^{\circ}C$. The results show that the performance of heat transfer coefficient for corrugation height 2.5mm increases about 9.5~17.1% compared to that of corrugation height 3.1mm. On the other hand, the performance of pressure drop for corrugation height 2.5mm is remarkably higher than that of corrugation height 3.1mm, about 65.7~86.0%.

Finite Element Analysis on the Stress and Displacement Characteristics of Oil Pipe (오일 파이프의 응력 및 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.374-380
    • /
    • 2009
  • This paper presents the stress and displacement characteristics of oil pipe using the finite element analysis. Displacement in axial direction and von Mises stress of a pipe were analyzed with three design factors, which are the pipe thickness, the corrugation pitch and the corrugation height, under uniform oil pressure. The FE computed results are presented between a conventional round pipe and a rectangular pipe, which is manufactured in this study. The computed FE results show that maximum displacement in axial direction and von Mises stress of pipe are increased linearly as the oil pressure increases. Also, they are increased linearly as the corrugation pitch, corrugation height and pipe thickness increases. von Mises stress of a rectangular pipe at the edge increases sharply compared with that of a conventional round pipe. Therefore, the strength of rectangular pipe is superior to that of a conventional round pipe.

Investigation of Flow and Heat Transfer Characteristics of Plate Heat Exchanger Taking into Account Entrance Effects and Variation in Corrugation Height (입구영향 및 주름높이의 변화를 고려한 판형열교환기의 유동 및 열전달 특성)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.965-973
    • /
    • 2010
  • Numerical analysis has been carried out to investigate the heat transfer characteristics of a plate heat exchanger. The multi-cell models with inlet part and outlet part are used for performing numerical simulation. The plate heat exchanger is characterized by chevron angle of $15^{\circ}$, corrugation pitch of 24mm and corrugation height 6~12mm. The length of the inlet-part considered in the analysis ranges from 24.8 to 124mm and Reynolds numbers range from 1,000 to 10,000. The correlations such as friction factor and Colburn factor are compared with previous experimental data. The results can be utilized for designing the plate heat exchanger.

Numerical Analysis on Heat Transfer Characteristics and Pressure Drop in Plate Heat Exchanger (판형열교환기의 열전달특성 및 압력강하에 관한 해석적 연구)

  • Kim, K.R.;Kim, I.G.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2002
  • This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-$\varepsilon$ model. Computations have been carried out for a range of chevron angle from $30^{\circ}$ to $60^{\circ}$, inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases.

Numerical Analysis on the Stress and Deformation Behavior Characteristics of Flexible Joint for a Gas Pipe (가스배관용 플렉시블 조인트의 응력 및 변형거동특성에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Kyung-Seob
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2011
  • In this study, the stress and deformation behavior characteristics of a flexible joint for a gas pipe have been analyzed by a finite element method. These characteristic results may investigate the strength safety analysis of a flexible joint, which is composed by a spiral corrugation pipe or a rectangular corrugation model and a plane pipe. The FEM computed results show that an optimized spiral corrugation pipe model is a inclined angle of $4.7^{\circ}$ and a corrugation height of 1.5mm. And also, a rectangular corrugation pipe model of $90^{\circ}$ is recommended in strength safety rather than a spiral corrugation pipe with an inclined angle. Thus, a corrugated pipe for an increased strength safety is to recommend a reduced pitch and curvature radius of an inclined corrugation.

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

Numerical Simulation of the Fully Developed Flow and Heat Transfer of a Plate Heat Exchanger Taking into Account Variation in the Corrugation Height (주름높이의 변화를 고려한 판형열교환기의 완전발달유동 및 열전달 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Numerical analysis has been carried out to investigate the fully developed flow and heat transfer characteristics of a plate heat exchanger. Multi-cell models with an inlet part and outlet part are used to perform the numerical simulation. The plate heat exchanger is characterized by a chevron angle of $20^{\circ}$ and a P/H ratio of 2.0~4.0. The working fluid is water and the Reynolds numbers range from 300 to 1,500. The correlation is given in the form of $f=CRe^m$ for the friction factor and $j=CRe^m$ for the Colburn factor. It is found that the fully developed flow starts from the third cell and the Nusselt number increases with decreasing P/H ratios.

Design of Optimized Two Baseline Waveguide Slot Array Antenna for Interferometric Radar Altimeter (기저선이 최적화된 간섭계 레이다 고도계용 도파관 슬롯 배열 안테나 설계)

  • Yoon, Nanae;Kim, Jihyung;Kim, Jinsu;Jang, Jonghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • In this paper, the compact waveguide slot array antenna for interferometric radar altimeter is proposed. The proposed antenna structure consist of corrugation structure which is applied between each channel to improve isolation, three-channel waveguide slot array antenna and feeder. In addition, to reduce the occurrence of phase ambiguity, the baseline spacing of the three-channel antenna is analyzed and the results are applied to the design. For compact design, reduced height and SMP connector structure are used and the dip brazing method which is the conjugation method after dipping to flux is used for the fabrication of the lightweight antenna. The measurement result of the proposed antenna shows less than 1.41 : 1 (VSWR) and 48.3 dBc (isolation). The antenna gain is higher than 20.2 dBi and the side lobe levels are lower than 18.8 dB (vertical plane) and 10.0 dB (horizontal plane).

Experimental and numerical investigations on axial crushing of square cross-sections tube with vertical wave

  • Eyvazian, Arameh;Eltai, Elsadig;Musharavati, Farayi;Taghipoor, Hossein;Sebaey, T.A.;Talebizadehsardari, Pouyan
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.119-141
    • /
    • 2020
  • In this paper, wavy square absorbers were experimentally and numerically investigated. Numerical simulations were performed with LS-Dyna software on 36 wavy absorbers and their crushing properties were extracted and compared with the simple one. The effect of different parameters, including wave height, wave depth, and wave type; either internal or external on the crushing characteristics were also investigated. To experimentally create corrugation to validate the numerical results, a set of steel mandrel and matrix along with press machines were used. Since the initial specimens were brittle, they were subjected to heat treatment and annealing to gain the required ductility for forming with mandrel and matrix. The annealing of aluminum shells resulted in a 76%increase in ultimate strain and a 60% and 56% decrease in yield and ultimate stresses, respectively. The results showed that with increasing half-wave height in wavy square absorbers, the maximum force was first reduced and then increased. It was also found that in the specimen with constant diameter and half-wave depth, an increment in the half-wave height led to an initial increase in efficiency, followed by a decline. According to the conducted investigations, the lowe maximum force can be observed in the specimen with zero half-wave depth as compared to those having a depth of 1 cm.

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.