• Title/Summary/Keyword: Corrugated web

Search Result 65, Processing Time 0.026 seconds

Experimental Study on Flexural Structural Performance of Sinusoidal Corrugated Girder (파형 웨브주름 보의 휨성능에 관한 실험적 연구)

  • Kim, Jong Sung;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.503-511
    • /
    • 2015
  • In long span steel structure, the plate girder reinforced with stiffeners are commonly used. When choosing the cross section with deep depth of girder as well as narrow width, however, out of plane buckling can be a problem due to web slenderness. In an effort to solve this issue, current study determined the applicability of using corrugated web girder with deep depth as bending member, which is generally being utilized in both factory and warehouse nationwide. To accomplish this, we performed the loading test of H-shaped beam with sinusoidal corrugated web. Corrugated web CP-2.3 specimen exhibited 12% less maximal bending strength but CP-3.2 specimen exerted 24% increase in strength compared to plate web P-4.5. this result indicates that corrugated web provides enough strength even with unfavorable width-thickness ratio of plate. And bending as well as shear strength estimated by the Eurocode (EN 1993-1-5) were compared with both bending strength by loading test and shear strength estimated by KBC2009. In case of eurocode, increase in plate thickness did not help in bending performance improvement. moreover, shear performance was sensitive to the thickness of the web folds and the shape of the web plate.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Ye, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including a shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of flange section to web section and that of the steel truss web girder is calculated by the equation proposed by Abdel. Static deflections and natural frequencies by 3D finite element analyses and those by the equivalent beam theory are in good agreement.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

A Development of Torsional Analysis Model and Parametric Study for PSC Box Girder Bridge with Corrugated Steel Web (복부 파형강판을 사용한 PSC 복합 교량의 비틀림 해석모델의 제안 및 변수해석)

  • Lee, Han-Koo;Kim, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.281-288
    • /
    • 2008
  • The Prestressed Concrete (hereinafter PSC) box girder bridges with corrugated steel webs have been drawing an attention as a new structure type of PSC bridge fully utilizing the feature of concrete and steel. However, the previous study focused on the shear buckling of the corrugated steel web and development of connection between concrete flange and steel web. Therefore, it needs to perform a study on the torsional behavior and develop the rational torsional analysis model for PSC box girder with corrugated steel web. In this study, torsional analysis model is developed using Rausch's equation based on space truss model, equilibrium equation considering softening effect of reinforced concrete element and compatibility equation. Validation studies are performed on developed model through the comparison with the experimental results of loading test for PSC box girder with corrugated steel webs. Parametric studies are also performed to investigate the effect of prestressing force and concrete strength in torsional behavior of PSC box girder with corrugated steel web. The modified correction factor is also derived for the torsional coefficient of PSC box girder with corrugated steel web through the parametric study using the proposed anlaytical model.

Design and Safety Control in Construction Stage of Prestressed Concrete Box Girder Bridge with Corrugated Steel Web (파형강판 PSC 박스거더 교량의 설계 및 시공중 안전관리)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • The Ilsun Bridge is the world's longest box girder bridge(801m) with corrugated steel webs and has the widest width($21.2{\sim}30.9m$: tri-cellular cross section) among these kinds of composite girder bridges. It has fourteen spans(50m, 10 at 60m, 50m, 2 at 50.5m) where twelve spans are erected by the incremental launching method and two spans by full staging method. Special topics related to the structural safety of prestressed concrete box girder bridge with corrugated steel web in construction stage and service were reviewed. Investigations focus on the span-to-depth ratio, shear stress of corrugated steel webs and optimization of tile length of steel launching nose. The span-to-depth ratio of Ilsun bridge has been found to be well-planned while the corrugated steel web has been designed highly conservative and it has been observed that the conventional nose-deck interaction equation do not fit well with corrugated steel web bridges. As a result, detailed construction stage analysis was performed to check the stress levels and the safety of preceding design conditions. Finally, from the design review of Ilsun bridge, this study suggests optimal design issues which should be of interest in designing a prestressed concrete box girder bridge with corrugated steel webs.

A Study on Applicability of Citrus Sludge for the Manufacture of Corrugated Medium (골심지 제조를 위한 감귤 착즙 슬러지의 적용성 평가)

  • Lee, Tai-Ju;Kim, Hyoung-Jin;Lee, Chang-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.47-53
    • /
    • 2010
  • It is important to utilize the citrus sludge in terms of the reuse of waste materials in the manufacture of corrugated medium. Especially, the mandarin industry occupies the first place in Jeju province. In this paper, the application of citrus sludge mixed with KOCC recycled fibers into the manufacture of corrugated medium was studied. The citrus sludge was acidic in pH value. Also, the constituents of citrus sludge contain some short fibers, fines, and mucus which contain flavonoids, pectins and so on. In papermaking application, these components cause some troubles like foams, bad smell, fouling on the paper machine, and bad drainage and web breaks of wet web. The strength properties of handsheets prepared from KOCC and citrus sludge was decreased, compare to handsheets made of only KOCC. To compensate the problems on strength properties, some kinds of additives were tried to apply into papermaking wet-end system in laboratory scale. As a result, mixing conditions of alum, starch and anionic additives showed the best options in the recovery of strength properties and formations of corrugated medium.

Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings

  • Shariati, Mahdi;Faegh, Shervin Safaei;Mehrabi, Peyman;Bahavarnia, Seyedmasoud;Zandi, Yousef;Masoom, Davood Rezaee;Toghroli, Ali;Trung, Nguyen-Thoi;Salih, Musab NA
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.569-581
    • /
    • 2019
  • Corrugated steel plate shear wall (CSPSW) as an innovative lateral load resisting system provides various advantages in comparison with the flat steel plate shear wall, including remarkable in-plane and out-of-plane stiffnesses and stability, greater elastic shear buckling stress, increasing the amount of cumulative dissipated energy and maintaining efficiency even in large story drifts. Employment of low yield point (LYP) steel web plate in steel shear walls can dramatically improve their structural performance and prevent early stage instability of the panels. This paper presents a comprehensive structural performance assessment of corrugated low yield point steel plate shear walls having circular openings located in different positions. Accordingly, following experimental verification of CSPSW finite element models, several trapezoidally horizontal CSPSW (H-CSPSW) models having LYP steel web plates as well as circular openings (for ducts) perforated in various locations have been developed to explore their hysteresis behavior, cumulative dissipated energy, lateral stiffness, and ultimate strength under cyclic loading. Obtained results reveal that the rehabilitation of damaged steel shear walls using corrugated LYP steel web plate can enhance their structural performance. Furthermore, choosing a suitable location for the circular opening regarding the design purpose paves the way for the achievement of the shear wall's optimal performance.

Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab

  • He, Jun;Liu, Yuqing;Xu, Xiaoqing;Li, Laibin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.501-524
    • /
    • 2014
  • This paper presents a type of composite box girder with corrugated webs and concrete filled steel tube slab to overcome cracking on the web and reduce self-weight. Utilizing corrugated steel web improves the efficiency of prestressing introduced into the top and bottom slabs due to the accordion effect. In order to understand the loading capacity of such new composite structure, experimental and numerical analyses were conducted. A full-scale model was loaded monotonically to investigate the deflection, strain distribution, loading capacity and stiffness during the whole process. The experimental results show that test specimen has enough loading capacity and ductility. Based on experimental works, a finite element (FE) model was established. The load-displacement curves and stress distribution predicted by FE model agree well with that obtained from experiments, which demonstrates the accuracy of proposed FE model. Moreover, simplified theoretical analysis was conducted depending on the assumptions which were confirmed by the experimental and numerical results. The simplified analysis results are identical with the tested and numerical results, which indicate that simplified analytical model can be used to predict the loading capacity of such composite girder accurately. All the findings of present study may provide reference for the application of such structure in bridge construction.