• Title/Summary/Keyword: Corrosiveness

Search Result 39, Processing Time 0.024 seconds

A study of introduction for using Laser in dental prosthesis (치과보철영역에 레이저 이용을 위한 이론적 고찰)

  • Park, Myoung-Ho;Bae, Bong-Jin;Lee, Hwa-Sik
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.131-139
    • /
    • 2008
  • It's very important to find the most appropriate adhesion technique available, taking into consideration factors such as biocompatibility, non-corrosiveness, mechanical stability, etc. Laser welding is the best choice you can make because from a mechanical viewpoint, a laser welded surface has better particle structure than does a casted particle structure. Furthermore, it requires no additional material and the same metal alloy which is used when casting can be used. Therefore, the resulting mixture will consist of a single alloy, instead of utilizing different alloy combinations. Another benefit is the low economic cost. The most beneficial aspects of laser welding is that it is biologicallly friendlly, doesn't require soldering, can fuse different metal alloys together, and can weld on heat-sensitive spots(E.g. around resin or ceramic). A consistent strong pulse is possible. This technique is capable of welding on master models and creates accurate welds. It is capable of due to its stronger, non-corrosive microscope, which allows 25times magnification during the soldering process. This is possible because of its high stability from the tiny particle structure.

  • PDF

Development of E-100 Fuel Pump Lower Housing Using Cold Forging Process (E-100용 연료펌프 하부 하우징의 냉간단조 개발)

  • Lee, Byeong-Hoon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.14-20
    • /
    • 2012
  • Performance and anti-corrosion of cold forged fuel pumps and die-casting fuel pumps have been tested in this study. Ethanol with 10 ppm of acetic acid is applied for the anti-corrosion test for 250 hours. Performance test result shows that the pumping efficiency of the cold forged fuel pump is equivalent to that of the die-casting fuel pump. The cold forged lower housing has better quality against corrosiveness and finer metallic structure than the die-casting lower housing does.

Introduction of Corrosion Index System for Stability of Drinking Water Quality (음용수질의 안정성을 위한 부식지수제도의 도입)

  • Kim, Yeong-Kwan;Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.707-717
    • /
    • 2011
  • Replacement of old water distribution pipes for protecting water quality induced by pipe corrosion requires enormous budget. Even after the replacement, however, corrosion can occur again at any times and, therefore, inhibitive measure of the corrosion will be not only economical but needed to diminish the consumers' distrust on tap water quality. In 2008, National Environmental Research Institute did a survey on 8 major drinking water source and proposed to establish the Langelier Saturation Index(LI) as a corrosion index in Drinking Water Quality Criteria. Among the water industries of Korea, K-Water is the only one that set up the level of pH over 7.0 and LI above -1.5 on yearly average basis. However, no systematic regulation including LI to inhibit the corrosive tendency has been established yet. In this paper, LI values out of 31 drinking water treatment plants were analyzed and two-stage control of LI value as a measure of corrosive tendency of water is proposed. Primarily, water treatment facilities may operate the system at a target LI value below -1.5. Following the investigation on the effect caused by adjusting the LI value on water quality and corrosiveness, it will be desirable to improve LI value below -1.0 in the long run. In addition to the LI, supplemental use of Larson's modified ratio (LMR) which incorporates hydraulic detention time will be necessary. Several methods to prove the inhibitive effect of improving the LI value on water quality have been also suggested.

Reaction Kinetics for the Synthesis of Diphenyl Carbonate from Dimethyl Carbonate (디메틸 카보네이트(DMC)로부터 디페닐카보네이트(DPC) 합성을 위한 반응속도론)

  • Choi, Yu-Mi;Cho, Im-Pyo;Cho, Hoon;Lee, Jin-Hong;Han, Myung-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.766-771
    • /
    • 2012
  • PC (polycarbonate) is one of the widely used engineering plastics. Polycarbonate (PC) is traditionally produced by the reaction of phosgene and bisphenol-A. This phosgene process has the disadvantage as the high toxicity and corrosiveness of phosgene. The main point of focus to overcome the disadvantage of phosgene based process has been a route through dimethyl carbonate (DMC) to diphenyl carbonate (DPC). In this paper, for the DPC synthesis reaction using PBO as a catalyst, the effect of reaction temperature, reactant ratio, catalyst concentration on the reaction yield was investigated. A kinetic model for the DPC synthesis reaction was proposed and kinetic parameters for the proposed model was determined from batch reactor experiments. The predicted results by the proposed model were in good agreement with the experimental results.

A study on the Internal Flow Analysis of Gas Cylinder Cabinet for Specialty Gas of Semiconductor (반도체용 특수가스 공급을 위한 가스캐비닛 내부 유동해석에 관한 연구)

  • Kim, Jung-Duck;Han, Seung-A;Yang, Won-Baek;Rhim, Jong-Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.74-81
    • /
    • 2020
  • In general, when manufacturing a semiconductor, a number of hazardous and dangerous substances such as flammability, toxic, and corrosiveness are used. In particular, semiconductors are manufactured using specialty gas in processes such as CVD and etching. The specialty gas is filled in a container in the state of compressed or liquefied gas, and a gas cylinder cabinet is used as a facility for supplying this specialty gas to the semiconductor manufacturing process. When a accident occurs in the gas supply system, gas is released through a pressure release device installed in the gas cylinder to secure the safety of the supply system. In this case, the gas released inside the gas cabinet, there is a risk of leaking to the outside. After that, by analyzing the gas flow in the gas cabinet, it is intended to identify the risk associated with leak and to provide measures to prevent accidents.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Recyclability Estimation of Fuel Tank Module in Vechicle (자동차 연료탱크 모듈의 재활용성 평가)

  • Lee, Chul-Min;Lee, Eun-Ok;Kim, Ha-Su;Lee, Jun-Su;Kang, Hee-Yong;Yang, Sung-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • We analyzed recyclability of the fuel tanks made from steel or aluminum alloy. For a comparison of the fuel tank recyclability, first we had analyzed the process of disassembly in a vehicle and evaluated its disassemblability. Then we evaluated the recyclability for reuse and withdrawal. The processes were more or less same owing to the similarity of fastening method of fuel tank and components. However, the fuel tank of the aluminum alloy was easier (about 5%) to disassembly than the fuel tank of steel. This could be attributed to the differences in weight of steel and aluminium. On light of the withdrawal and reuse, the fuel tank made up of steel needed to plate with zinc or lead due to its anti-corrosiveness. Hence, it required additional processes. In this paper, we were explaining the results of our on going research on the recyclability of fuel tanks made of steel and aluminum alloys. The differences that we found between the fuel tank made up of the aluminum alloy and steel were in their weight, recyclability, disassemblability, anticorrosive property, cost and productivity.

Modelling of the Heat and Mass Transfer in a Liquid Desiccant Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기의 열물질 전달 모델링)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.303-311
    • /
    • 2011
  • This study presents a new idea of liquid desiccant dehumidifier with extended surface to improve the compactness. Extended surface is inserted between vertical cooling tubes, and the liquid desiccant flows down along the tube walls and the extended surface as well. Though the extended surface contributes to the increase in the mass transfer area, the effect tends to be limited because less conductive non-metallic materials need to be applied due to the high corrosiveness of liquid desiccant. To analyze the effects of the extended surface insertion, mathematical modelling and numerical integration are performed for the heat and mass transfer in the liquid desiccant dehumidifier. The results show that, though the liquid desiccant on the extended surface is heated due to the moisture absorption, the temperature can be maintained by periodic mixing at the contact points between the tube and the extended surface with the liquid desiccant stream from the tube side at a relatively low temperature. This implies the absorption heat from the extended surface side can be removed effectively by mixing, which leads to a substantial improvement of the dehumidification in the liquid desiccant dehumidifier with extended surface. When the interval of the extended surface, $p_e/L$, is less than 0.1, the dehumidification is shown to increase by more than two times compared with that without extended surface.

The study on oriental and western medicine of esophagitis (식도염(食道炎)에 대(對)한 동서의학적(東西醫學的) 고찰(考察))

  • Choi, Chang-woo;Son, Chang-gyu;Cho, Chong-kwan
    • Journal of Haehwa Medicine
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • We arrived at the following conclusions after we have studied esophagitis through the literatures of oriental and western medicine. 1. The western medical causes of acute esophagitis are corrosiveness chemical material, esophageal or gastric disease, trauma, blister stomatitis, filamentous fungus infection and uremia of chronic patient etc, and the oriental medical causes are qi and blood stagnation, blood stasis and stagnation, stagnant phlegm by coldness, heating, dyspepsia and food poisoning etc. 2. The western medical causes of chronic esophagitis are malfunction of lower esophageal sphincter, esophageal tom chink and hernia, increase of gastric pressure by overeating, fatness, pregnancy and ascites etc, and the oriental medical causes are asthenic cardiac qi, hepatic qi attacking stomach by seven kinds of depression, cold-damp stagnation and insufficiency of gastric qi by overeating, excessive drinking and sexual indulgence etc. 3. The main symptoms of acute esophagitis are severe chest pain, instantly vomiting, swallowing pain etc, and chronic esophagitis are occasionally light chest pain, heart bum, anorexia, dysphagia, dizziness, general body weakness etc. These symptoms are come under thoracic obstruction, acid regurgitation, vomiting and chest pain of oriental medicine. 4. The western medical diagnoses of acute and chronic esophagitis have used radiation test, esophageal endoscopy, esophageal pressure test and biopsy etc, and the oriental medical diagnoses have used syndrome differentiation by four examination of inspection, listening and smelling examination, inquiring, pulse-taking and palpitation. 5. The western medical treatments of acute esophagitis have regarded preservation stability of esophagus as a principle, and the oriental medical treatments mainly have used expelling pathogen of expelling cold and regulating qi, cooling and removing stasis, promoting blood circulation to remove blood stasis, eliminating phlegm and regulating qi. 6. The western medical treatments of chronic esophagitis have regarded decrease flowing backward of gastric juice as a purpose, and the oriental medical treatments mainly have used strengthening body resistance of replenishing and strengthening cardioqi, dispersing stagnated hepatoqi, expelling cold and dehygrosis, invigorating stomach and nourishing qi.

  • PDF

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.