• Title/Summary/Keyword: Corrosive condition

Search Result 97, Processing Time 0.023 seconds

Study on Corrosion Problems in PEMFC Cooling System (PEMFC 냉각 시스템의 물부식 방지에 관한 연구)

  • Park, Kwang-Jin;Jeong, Jae-Hwa;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

The Effect of Additives on Properties of Sintered $ZrSiO_4$ ($ZrSiO_4$ 소결체의 특성에 미치는 첨가제의 영향에 관한 연구)

  • 박금철;차명진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.71-75
    • /
    • 1985
  • This study deals with sintering and corrosive behavior of sintered zircons mixed with 5wt% of clay $Cr_2O_3$ $CrO_3-MgO$ aqueous solution and $CrO_3-Mg(OH)_2$ aqueous solution. Measurements were conducted by firing specimens at 135$0^{\circ}C$ 145$0^{\circ}C$ and 155$0^{\circ}C$ 1$650^{\circ}C$ for 3hrs in oxidized and reduced atmospheric conditions. Following results were obtained. 1. Sintered zircon with 5 wt% clay showed that highest compressive strength and the lowest apparent porosity and the other showed less positive result than above specimen in order of zircon with $CrO_3-MgO$ aqueous solution $CrO_3-Mg(OH)_2$ aqueous solution and $Cr_2O_3$. 2. The more firing temperature increased the more its strength improved and porosity decreased and specimen which was fired over 155$0^{\circ}C$ and in reduced atmospheric condition showed better results. 3. Zircon with additives which was fired over 155$0^{\circ}C$ showed the evidence of thermal dissociation but it was not rebonded completely during cooling. 4. Zircon with $CrO_3-MgO$ aqueous solution and $CrO_3-Mg(OH)_2$ aqueous solutiion showed more corrosive resistance than zircon itself and zircon-clay system.

  • PDF

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel (12Cr 합금강의 부식특성 및 인공열화된 12Cr합금강의 피로특성)

  • Jo, Sun-Young;Kim, Chul-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.965-971
    • /
    • 2001
  • To estimate the reliability of 12Cr alloy steel, the material of turbine blade in the steam power plant, Its corrosion susceptibility and fatigue characteristics in NaCl and Na$_2$SO$_4$solution with the difference of concentration and temperature was investigated. The polarization tests recommended in ASTM G5 standard for corrosion susceptibility in the various corrosive solutions was estimated. It showed that the higher temperature, the faster corrosion rates and corrosion rates were the fastest in 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution. From these results, the degradation conditions were determined in distilled water, 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution at room temperature, 60$\^{C}$ and 90$\^{C}$ during 3, 6 and 9 months. Its surface had a few pits for long duration. But, it was not susceptible in sulfide and chloride condition of several temperatures. If the degraded 12Cr alloy steel and non-degraded one were compared with fatigue characteristics, Any differences were not found regardless of temperature and degradation period.

Cavitation-Erosion Characteristics between Polymer Based Composites and Metals under the Various Condition of Fluid Systems (유체 환경하에서의 고분자 기지 복합재료와 금속재의 캐비테이션 침식 특성)

  • Kim, Yun-Hae;Son, Young-Jun;Eum, Soo-Hyun;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.363-371
    • /
    • 2003
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator(suggested by ASTM G 32, 20KHz, 50$mu extrm{m}$). The maximum erosion rate by cavitation erosion in both of distilled water and sea water appeared to be proportioned to their hardness and tensile strength. Cavitation weight loss and rate of cast iron in sea water condition were greater(approximately 3 times) than that in distilled water condition, however in case of stainless steel and brass the cavitation weight loss of composite materials were not so different in both of their conditions. Cavitation weight loss of composite materials were shown as below on this test, Duratough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's distilled water condition. The main tendency of cavitation erosion for metals appeared that small damaged holes causing by cavitation erosion was observed with radial pattern. On the other hand, the tendency for composites appeared that small damaged holes were observed randomly.

Minimizing of Cavitation-Erosion Damage for Various Structures using Composites under the various Condition of Fluid Flow Systems (복합재료를 이용한 유동유체 환경하의 각종 구조물의 캐비테이션 침식손상의 최소화 방안)

  • 이정주;김찬공;김용직;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.227-233
    • /
    • 1999
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator (suggested by ASTM G-32, 20KHZ, 24{$mu}m$).The main results obtained are summarized as follows ; (1) The maximum erosion rate by cavitation erosion in both of fresh-water and sea-water appeared to be proportioned to their hardness and tensile strength. (2) Cavitation weight loss and rate of cast iron in sea-water condition were greater (approximately 3 times) than that in distilled-water condition, however in case of stainless and brass the cavitation weight loss and their rates were not so different in both of their conditions. (3) Cavitation weight loss of composite materials were shown as below on this test, DuraTough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's fresh-water condition. (4) As the result of observation with digital camea of specimens, the main tendency of cavitation erosion for metals, was that small damaged holes causing by cavitation e개sion was appeared with radial pattern, and composites materials was that small damaged holes were appeared randomly.

  • PDF

Effect of Tempering Condition on Hydrogen Diffusion Behavior of Martensitic High-Strength Steel (템퍼링 조건이 마르텐사이트계 고강도강의 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Hwang, Eun Hye;Lee, Man Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.242-248
    • /
    • 2018
  • Martensitic high-strength steels revealed superior mechanical properties of high tensile strength exceeding 1000 Mpa, and have been applied in a variety of industries. When the steels are exposed to corrosive environments, however, they are susceptible to hydrogen embrittlement (HE), resulting in catastrophic cracking failure. To improve resistance to HE, it is crucial to obtain significant insight into the exact physical nature associated with hydrogen diffusion behavior in the steel. For martensitic steels, tempering condition should be adjusted carefully to improve toughness. The tempering process involves microstructural modifications, that provide changes in hydrogen diffusion/trapping behavior in the steels. From this perspective, this study examined the relationship between tempering condition and hydrogen diffusion behavior in the steels. Results based on glycerin measurements and hydrogen permeation evaluations indicated that hydrogen diffusion/trapping behavior was strongly affected by the characteristics of precipitates, as well as by metallurgical defects such as dislocation. Tempering condition should be adjusted properly by considering required mechanical properties and resistance to HE.

An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation (컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석)

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

A Study on the Processing of Anti-Corrosive Composites for Propeller Shaft of the Ship and the Evaluation of Its Static and Fatigue Properties (선박용 프로펠러축 방식처리용 복합재료의 제조와 그 정적 및 피로특성 평가에 관한 연구)

  • 김윤해;왕지석;배창원
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 1998
  • Kind 1 propeller shaft in ships is the shaft which is provided with effective measures against corrosion by sea water, or the shaft which is made of approved corrosion resistance materials. The propeller shaft other than specified above is Kind 2. Thus, this study is mainly concerned with the resistance to fatigue damage in sea water against stress concentrations due to the notches. The results obtained can be summarized as follows; (1) The stress increases with curing time, however, when the curing time reaches at 96 hours the stress becomes a constant value. The elongation decreases with curing time, however, when the curing time reaches at 48 hours the elongation becomes a constant value. Thus, in case of FRP coating on propeller shaft, it is necessary to cure for 48 hours at least. (2) The relation of $\sigma$$_n$-K$_t$ is to be classified into two parts, which is a part where fracture nominal stress, $\sigma$$_n$, decreases with increasing $K_t$, and a part where $\sigma$$_n$ is nearly constant independent of $K_t$. (3) According to a linear notch mechanics, the measure of severity controlling the fracture in notched FRP body is the notch root radius, $\rho$. The notched static strength of an arbitrary specimen will be estimated from $\sigma$$_{max}$ -1/$\rho$ curve. (4) Through the observation of cross section after fatigue test, the part of interface was kept good condition irrespective of loading conditions.

  • PDF