• Title/Summary/Keyword: Corrosion weight

Search Result 604, Processing Time 0.029 seconds

Experimental Study on Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 실험적 거동분석)

  • 이성우;김제인;김병석;배두병;박성용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.357-364
    • /
    • 2003
  • In the conventional reinforced-concrete bridge deck, concrete and steels are likely to be deteriorated and corroded under the influence of noxious environment. To cope with these problems caused in the conventional reinforced-concrete bridge deck, pultruded composite bridge deck having light weight, high strength, corrosion resistance and durability is developed. For the DB24 truck load pultruded composite bridge deck is designed and fabricated. For the fabricated and assembled deck panel, structural testing such as flexural test, local fatigue test, flexural fatigue test are conducted to verify the deck capacity experimentally. In this paper design for deck profile, details of connection and experimental results of composite bridge deck are presented.

  • PDF

Composite Skin and Corner Plate for Protection of Concrete Structure (콘크리트 구조물 보호용 복합소재 피복판 및 모서리 보호공)

  • 이성우;이선구;조남훈;신경재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.199-202
    • /
    • 2000
  • Compared with existing construction materials, ACM(Advanced Composites Material) possesses many advantage such as light-weight, high-strength, corrosion resistant properties, etc. In this study, utilizing those advantages of ACM, composite skin and comer plate for protection of concrete port structure are developed. Detailed procedure fur analysis, design and fabrication along with site installation for demonstration project are described. It is also demonstrated that pultrusion process for comer plate and VARTM process for composite skin are promising fabrication methods fer future civil infrastructure application.

  • PDF

Embedded Rail Track on the LRT(Tram) (레일 매립궤도의 특성과 노면철도에 적용 가능성에 관한 연구)

  • Lee Ki-Seung;Kim Sung-Chil;Beak Jin-Ki;Go Dong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • Embedded rail track can be described as a track structure that is completely covered within pavement. Rail supported continually on a concrete slab or concrete plinth. There are many kinds of types such as non-resilient track and resilient track, super resilient embedded track (floating slab). Embedded rail track is generally the standard for light rail transit routes because this track has many advantages such as reducing noise, maintenance cost and weight of track. In this paper, decision of track profile is restricted by the optimum levels of the flangeway and the gap between the rail head and the pavement surface of depressing tread zone. By result of this study, embedded rail track can reduce corrosion of rail, internal stress and rail deflection.

  • PDF

A Case Study for Improving the Manufacturing Process of Composite Main Wing for Small Aircraft (소형 항공기 주익 복합재료 적용 사례 분석을 통한 개선 방향 연구)

  • Cho, Il-Ryun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2015
  • Composite materials are widely used as structural materials for manufacturing an aircraft, due to their : low weight, low thermal expansion coefficient, production efficiency, anisotropy, corrosion resistance and long fatigue life. The range of using composite materials has been extended from the fuselage and the wings to the entire aircraft structure. In this paper, by analyzing the problems which were generated while designing and fabricating aircraft structures using composite materials, the differences between metallic structures and composite structures are described. In addition, the methodological improvement directions on design and fabricating are described.

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.

Magnesium Sulfate Resistance of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 황산마그네슘 저항성에 관한 연구)

  • Kim, Young-Su;Jeong, Yoo-Jin;Lee, Dong-Un
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The magnesium sulfate solution digestion test carried out for resistance of concrete containing waste glass powder on magnesium sulfate attack. Moreover, it yielded S.D.F index was used for the criteria of quantitative assessment to the resistance of magnesium sulfate for the purpose of evaluation of chemical deterioration on concrete. Furthermore, to evaluate for micro-cracks within concrete and external corrosion, the weight variation of specimens and the dynamic elasticity were compared and analyzed and also the applicability was examined using the analysis of product of hydration through out observing external deformation and micro-structural deformation.

Development of Ultra Thin Notebook Case Usins Mg Alloy Sheet (초박판 마그네슘 노트북 케이스 개발)

  • Lee, K.T.;Beak, H.J.;Hwang, S.H.;Choi, C.S.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.383-386
    • /
    • 2008
  • Magnesium alloy sheets have been extending their field of applications to automotive and electronic industries taking advantage of their excellent light weight property. In addition to their excellent light property, magnesium alloys have several other advantages: high specific strength, good welding capability and corrosion resistance. Taking advantage of these benefits, magnesium alloys have also been substituting the polymeric materials in the electronic devices industries. In sheet metal forming application with magnesium alloys, the lower formability and high springback due to the lower elastic property (Young's modulus=45 GPa) at room temperature are major hurdles by which magnesium alloys have limited applications. In this study, commercial notebook case was adopted as the benchmark model, and then design parameters and process conditions are analyzed by the finite element simulation and physical try-outs.

  • PDF

A Study on the Standard of Ship Hull Construction for Aluminium Alloys Fishing Boats (알루미늄 합금제 어선건조를 위한 선체구조기준 설정에 관한 연구)

  • Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.1
    • /
    • pp.22-82
    • /
    • 2000
  • The ship hull construction materials of fishing boat has changed in order that wooden, steel, and fiber glass reinforced plastic(FRP). The fishing boat made from FRP has increased every year because that materials has proved excellent of the characteries for fishing boats construction members. Recently, FRP tend towards evasion for the pollution of air enviroment. Therefore. the materials of fishing boat construction must be exchanged by another one. Aluminium alloys must be recommended for fishing boats construction mateials because that is light weight and corrosion resisting in the sea water. Regulation of the standard of ship hull construction for aluminium alloys fishing boats did not enact laws in the interior now. Therefore, this regulation was studied by the following items. that is Rudder, Bottom construction, Side hull plate construction, Deck plate construction, piller. Water tight bulkhead, Deep tank, Fish tank, Stern construction, Superstructure, Deck house construction, Hatch, Engine room opening, Hatch opening, Bulwark, Welding and Rivet etc. A study on the regulation will be contributed to enact laws for fishing boat construction of aluminium alloys.

  • PDF

Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells (고분자전해질 연료전지용 금속분리판의 특성 및 코팅 기술)

  • Moon, Sungmo;Lee, Suyeon;Kwon, Duyoung
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • This paper reviews bipolar plate materials and coatings for polymer electrolyte fuel cell. First, six roles and 10 requirements of the bipolar plate are described in detail. Secondly, type of materials for the bipolar plate and their advantages and disadvantages are mentioned. Thirdly, different metallic materials are introduced in terms of electrical and thermal conductivities, corrosion resistance, weight, strength and cost. Finally, various types of coating materials and methods were briefly reviewed.

Effect of load eccentricity on buckling behavior of FRP composite columns with open and closed cross sections

  • M Kasiviswanathan;M Anbarasu
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.61-76
    • /
    • 2023
  • Fiber reinforced polymer (FRP) columns are increasingly being used in various engineering fields due to its high strength to weight ratio and corrosion resistance. Being a thin-walled structure, their designs are often governed by buckling.Buckling strength depends on state of stress of elements which is greatly influence by stacking sequence and various inaccuracies such as geometric imperfections and imperfections due to eccentricity of compressive load and non-uniform boundary conditions. In the present work, influence of load eccentricity on buckling strength of FRP column has been investigated by conducting parametric study. Numerical analyses were carried out by using finite element software ABAQUS. The finite element (FE) model was validated using experimental results from the literature, which demonstrated good agreement in terms of failure loads and deformed shapes.The influence of load eccentricity on buckling behavior is discussed with the help of developed graphs.