• Title/Summary/Keyword: Corrosion susceptibility

Search Result 88, Processing Time 0.029 seconds

Stress Corrosion Cracking of Alloys 600, 690, and 800 in a Tetrathionate Solution at $340^{\circ}C$

  • Lee, Eun-Hee;Kim, Kyung-Mo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.587-588
    • /
    • 2006
  • The stress corrosion cracking (SCC) susceptibility of Alloy 600 MA, Alloy 600 TT, Alloy 800, and Alloy 690 TT were investigated in a deaerated 0.01 M solution of sodium tetrathionate using reverse u-bend test samples at $340^{\circ}C$. The results showed that SCC occurred in all alloys, excluding Alloy 690 TT. The SCC susceptibility decreased with an increase in the chromium content of the alloys. The results of the deposits and spectra taken from an energy dispersive X-ray system confirmed the existence of a reduced sulfur causing SCC.

  • PDF

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF

Evaluation of Corrosion Characteristics of Pipeline Material(SUS316) for the Geothermal Power Plant (지열발전용 배관재(SUS316)의 부식특성 평가)

  • Han, Ji-Won;Park, Young-Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.142-146
    • /
    • 2012
  • In the geothermal power, the geothermal fluid such as water or steam is moved from the ground to turbine a pipeline. Because the geothermal fluid with high temperature contains Cl-and SO4-, It cause to diminish the system lifetime due to the increase in the corrosion of pipeline. In the present work, the characteristics of corrosion and its fatigue of the sus316 which is used in the pipeline are evaluated experimentally. From this study, the following results can be obtained; for the case of the corrosion environment, it is found that the corrosion rate is faster than that of the steam environment by 10 to 30 times, and the corrosion fatigue limit is underestimated compared to that of steam state.

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Alloy 600 Components Inspection Prioritization Using the Normalized PWSCC Susceptibility Index (정규화된 PWSCC 민감도 지수를 이용한 Alloy 600 기기 검사 우선순위 선정)

  • Kim, Tae Ryong;Kim, Hyung Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Alloy 600 widely used in nuclear power plant is susceptible to primary water stress corrosion cracking (PWSCC). It is important to prioritize the inspection of Alloy 600 components using PWSCC susceptibility index. Plant-specific model for the susceptibility index was reviewed. The normalized PWSCC susceptibility index to a reference value is suggested and applied. The result was found to be reasonable.

Intergranular Corrosion of Stainless Steel (스테인리스강 입계부식)

  • Kim, Hong Pyo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • Stainless steel can be classified into three categories depending on the microstructure as austenitic stainless steel, ferritic stainless steel and martensitic stainless steel. Generally, stainless steel is extremely resistant to corrosion as the name implies. However, under specific environments, susceptibility to localized corrosion such as pitting, intergranular corrosion and stress corrosion cracking increases. This paper reviewed the state of arts on intergranular corrosion mechanisms, countermeasures on intergranular corrosion and intergranular corrosion test methods. Intergranular corrosion is mostly related with chromium depletion at the grain boundary and sometimes with segregation of electroactive elements in solution annealed stainless steel. Countermeasures on intergranular corrosion include avoiding chromium depletion by heat treatment and the addition of alloying elements. Sensitization evaluation of stainless steel was performed either through acid immersion test or electrochemical test. The methods were standardized in (Japanese Industrial Standards). Even though are useful in evaluating the degree of sensitization for industrial purpose but do not provide detailed information about sensitization mechanism, cause and chromium profile.

Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP) (적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

Effects of Na2S, NaCl, and H2O2 Concentrations on Corrosion of Aluminum (AA1100의 부식에 미치는 Na2S, NaCl, H2O2 농도의 영향)

  • Lee, Ju Hee;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.312-317
    • /
    • 2019
  • The objective of this study was to investigate the corrosion behavior of aluminum (AA1100) in a mixed solution of 0 ~ 0.1 g/L Na2S + 0.3 ~ 3 g/L NaCl + 0 ~ 10 mL/L H2O2. Potentiodynamic polarization tests were performed. Effects of solution compositions on corrosion potential, corrosion rate, and pitting potential of aluminum were statistically analyzed with a regression model. Results suggested that localized corrosion susceptibility of aluminum was increased in the solution with increasing concentration of NaCl because the pitting potential was lowered linearly with increasing NaCl concentration. On the contrary, H2O2 mitigated the galvanic corrosion of aluminum by increasing the corrosion potential. It also mitigated localized corrosion by increasing the pitting potential of aluminum. Na2S did not exert a noticeable effect on the corrosion of aluminum. These effects of different chemical species at various concentrations were independent of each other. Synergy or offset effect was not observed.

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation

  • Kim, Sung Jin;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.209-225
    • /
    • 2017
  • Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.