• Title/Summary/Keyword: Corrosion shape

검색결과 266건 처리시간 0.036초

Relationship between the Applied Torque and CCT to obtain the Same Corrosion Resistance for the Plate and Cylindrical Shape Stainless Steels

  • Chang, Hyun Young;Kim, Ki Tae;Kim, Nam In;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.58-68
    • /
    • 2016
  • Many industries need the universal standard or technique to obtain the identical CCT regardless of specimen geometries. This study aimed to determine an appropriate applied torque to the cylindrical specimen defining the apparatus and the procedure to measure the temperature of initiating crevice corrosion in tubular shape products such as pipes, tubes and round rods etc; the test method also proved applicable to the plate type specimen. A series of experiments for CCT measurements with the plate type and cylindrical stainless steel specimens of various diameters with different microstructures (austenitic and duplex) and PRENs were conducted to determine the relationship among geometries on CCT. Thus, the apparatus that could measure the CCT of stainless steels with both plate and cylindrical geometries was newly designed. The use of the apparatus facilitated the same CCT value for both geometries only if the specimens were made of the same alloy. The applied torque can be calculated for various diameters of the cylindrical specimens using the following relation; Applied torque, $Nm=-0.0012D^2+0.019D+2.4463$ (D; the diameter of cylindrical specimen, mm). However, upwards of 35 mm diameter cylindrical specimens require 1.58Nm, which is the same torque for the plate type specimen; in addition, this test method cannot be used for cylindrical specimens of less than 15 mm diameter.

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.657-666
    • /
    • 2020
  • A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.

증기발생기 전열관에서의 응력부식 균열성장해석 (Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes)

  • 신규인;박재학;주진원;신응수;김홍덕;정한섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.19-24
    • /
    • 2000
  • Stress corrosion crack growth is simulated after assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noticed that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

해양환경에 노출된 강부재의 표면염분과 부식량 상관관계 (Correlation of Surface Chloride and Corrosion Amount for Steel Member Exposed in Marine Environment)

  • 하민균;허창재;유훈;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권4호
    • /
    • pp.45-53
    • /
    • 2023
  • 본 연구에서는 해양환경에 노출된 강부재의 표면염분과 부식량의 상관관계를 분석하기 위하여 해상강교량의 보강형 거더 부재와 강박스 실험체를 대상으로 표면염분량과 평균부식두께를 부재단위로 평가하였다. 표면염분은 월단위로 1년간 Bresle method를 활용하여 계측하였고, 부식량은 실험용 모니터링 강판에 발생한 부식생성물로 인한 중량감소량을 평균부식두께으로 환산하여 분석하였다. 표면염분과 부식량을 계측한 결과, 강부재의 형상이나 설치위치에 따라 상대적인 표면염분량과 평균부식두께의 차이가 나타났으며, 동일한 교량 내에 설치된 동일한 형상의 부재라도 부식량이 국부적으로 급격히 증가하는 것을 확인하였다. 표면염분과 부식량의 상관관계를 분석하기 위하여 표면염분에 따른 부식량 발생 경향을 평가하였으며, 부식량을 평가할 수 있는 평가식을 부재의 형상별로 분석하였다. 표면염분과 부식량의 상관관계 분석 결과, 표면염분의 영향으로 강부재에서 발생하는 부식량은 부재의 형상에 따라 약 1.15배까지 변화하는 것으로 나타났다.

전라남도 등록문화재의 수리공사에 관한 조사 연구 -수리공사에 따른 재료 및 형태 변화를 중심으로- (A study on repairing construction of Registered Cultural Properties of Jollanamdo -In consideration of material and patterns by repairing project-)

  • 신웅주;길종원
    • 한국농촌건축학회논문집
    • /
    • 제12권4호
    • /
    • pp.1-11
    • /
    • 2010
  • This study is a research examining reshaped pattern in the perspective of repairing parts and materials through repairing renovation of registered cultural properties constructed in modern times and results are as followings. Repairing construction of registered cultural properties of Jollanamdo according to parts is shown numerously in the order of roof, walls and windows, and mostly outworn as time passes on and leakage were the main cause of repair. Also when original shape was damaged by previous repair in the past, and this was another reason of repairing. It was surveyed that among the repairing job repair of damage occurred on the part of roofing area including water leakage, corrosion and damage of roofing material, and damage of groove channel were the most main cause of repair. Especially when roof leakage is occurred by outworn of roofing materials, this cause corrosion and damage of materials due to the damage of leakage parts and this cause repeating cycles of worse leakage again and again. Main repairing materials which deform the original shape of registered cultural properties were confirmed as copper plate used on the roof. Copper plate showing high frequency of application which replaces groove slate or cement roofing tile used on the roof before has high durability and anti-corrosion but it is considered improper material to recover original shape.

해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘 (Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment)

  • 김영복;김성종
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

플랜트 승압펌프 재순환 배관 용접부의 용접비드에 의해 발생한 감육결함 분석 및 건전성 평가 (Analysis of Weld Beads for Wall Thinning Defects in the Weld Zone of the Boost Pump Recirculation Pipe for Power Plants and Evaluation of Their Integrity)

  • 남기우;안석환;도재윤
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.38-46
    • /
    • 2010
  • The wall thinning phenomenon of pipes was simulated as metal loss due to erosion and corrosion. Such wall thinning defects in the pipes of power plants are a very important safety consideration. In this study, we analyzed wall thinning defects that occurred by weld bead of weld zone of boost pump recirculation pipe. From the results of the analysis of pipe failures, numerical analysis was performed by Fluent v6.3.26 using the standard k-$\varepsilon$ model of the weld bead shape, such as an elliptical or a spherical shape, on the inner wall of the pipe. Using the results obtained, we showed the overlap effect by cavitations corrosion and erosion-corrosion at the bottom of the wall-thinning defect.

알루미늄 1050 합금의 양극산화 시간에 따른 산화피막 성장 거동 및 부식 손상 연구 (Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy)

  • 최예지;정찬영
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.282-289
    • /
    • 2022
  • Aluminum 1000 series alloy, a pure aluminum with excellent workability and weldability, is mainly used in the ship field. Aluminum alloy can combine with oxygen in the atmosphere and form a natural oxide film with high corrosion resistance. However, its corrosion resistance and durability are decreased when it is exposed to a harsh environment for a long period of time. For solving this problem, a porous oxide film can be formed on the surface using an anodizing treatment method, a typical surface technique among various methods. In this study, aluminum 1050 alloy was anodized for 2 minutes, 6 minutes, and 10 minutes. The structure and shape of the oxide film were then analyzed to determine the corrosion resistance according to the thickness of the oxide film that changed depending on working condition using 15 wt% NaCl. After it was immersed in NaCl solution for 1, 5, and 10 days, corrosion damage was observed. Results confirmed that the thickness of the oxide film increased as the anodization time became longer. The depth of surface damage due to corrosion became deeper when the film was immersed in the 15 wt% NaCl solution for a longer period of time.

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구 (Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique)

  • 이연주;김성우;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.