Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.4.282

Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy  

Choi, Yeji (Department of Advanced Materials Engineering, Dong-eui University)
Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-eui University)
Publication Information
Corrosion Science and Technology / v.21, no.4, 2022 , pp. 282-289 More about this Journal
Abstract
Aluminum 1000 series alloy, a pure aluminum with excellent workability and weldability, is mainly used in the ship field. Aluminum alloy can combine with oxygen in the atmosphere and form a natural oxide film with high corrosion resistance. However, its corrosion resistance and durability are decreased when it is exposed to a harsh environment for a long period of time. For solving this problem, a porous oxide film can be formed on the surface using an anodizing treatment method, a typical surface technique among various methods. In this study, aluminum 1050 alloy was anodized for 2 minutes, 6 minutes, and 10 minutes. The structure and shape of the oxide film were then analyzed to determine the corrosion resistance according to the thickness of the oxide film that changed depending on working condition using 15 wt% NaCl. After it was immersed in NaCl solution for 1, 5, and 10 days, corrosion damage was observed. Results confirmed that the thickness of the oxide film increased as the anodization time became longer. The depth of surface damage due to corrosion became deeper when the film was immersed in the 15 wt% NaCl solution for a longer period of time.
Keywords
Corrosion resistance; Aluminum alloy; Anodization time; Thickness; Porous oxide film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395   DOI
2 S. H. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089   DOI
3 A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862   DOI
4 Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, Z. Wang, W. Huang, Effect of Anodizing Parameters on Film Morophology and Corrosion Resistance of AA2099 Aluminum- Lithium Alloy, Journal of the Electrochemical Society, 163, C36 (2016). Doi: https://doi.org/10.1149/2.1081607jes   DOI
5 L. Benea, N. Simionescu-Bogatu, R, Chiriac, Electrochemically Obtained Al2O3 Nanoporous Layers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2639 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038   DOI
6 K. S. Choudhari, C. H. Choi, S. Chidangil, S. D. George, Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina, Nanomaterials, 12, 444 (2022). Doi: https://doi.org/10.3390/nano12030444   DOI
7 S. J. Lee, S. J. Kim, Essential Anti-Corrosive Behavior of Anodized Al Alloy by Applied Current Density, Applied Surface Science, 481, 637 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.03.155   DOI
8 A. M. Abd-Elnaiem, A, Gaber, Parametric Study on the Anodization of Pure Aluminum Thin Film Used in Fabricating Nano-Pores Template, International Journal of Electrochemical Science, 8, 9741 (2013). Doi: http://www.electrochemsci.org/papers/vol8/80709741.pdf   DOI
9 J. G. Buijnsters, R. Zhong, N. Tsyntsaru, J. P. Celis, Surface Wettability of Macroporous Anodized Aluminum Oxide, Acs Applied materials & Interfaces, 5, 3224 (2013). Doi: https://doi.org/10.1021/am4001425   DOI
10 R. T. Foley, Localized Corrosion of Aluminum Alloys- A Review, Corrosion, 42, 277 (1986). Doi: https://doi.org/10.5006/1.3584905   DOI
11 W. Lee, S. J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemial Reviews, 114, 7487 (2014). Doi: https://doi.org/10.1021/cr500002z   DOI
12 Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corrosion Science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8   DOI
13 A. M. Abd-Elnaiem, A. M. Mebed, A, Gaber, M. A. Abdel-Rahim, Effect of the Anodization Parameters on the Volume Expansion of Anodized Aluminum Films, Int. J. Electrochem. Sci, 8, 10515 (2013). Doi: http://www.electrochemsci.org/papers/vol8/80810515.pdf   DOI
14 C. Jeong, C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n   DOI
15 H. Takahashi, M. Chiba, Role of Anodic Oxide Films in the Corrosion of Aluminum and its Alloys, Corrosion Reviews, 36, 35 (2018). Doi: https://doi.org/10.1515/corrrev-2017-0048   DOI
16 V. Dumitrascum, L. Benea, E. Danaila, Corrosion Behavior of Aluminum Oxide Film Growth by Controlled Anodic Oxidation, IOP Conference Series: Materials Science and Engineering, 209, 012016 (2017). Doi: https://doi.org/10.1088/1757-899X/209/1/012016   DOI
17 C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392   DOI
18 L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing Aluminum Corrosion Resistance by Two-Step Anodizing Process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046   DOI
19 C. Jeong, Ph.D. Thesis, pp. 2 - 5, Stevens Institute of Technology, New Jersey (2013).
20 I. Tsangaraki-Kaplanoglou, S. Theohari, T. Dimogerontakis, Y. M. Wang, H.H. Kuo, S. Kia, Effect of Alloy Types on the Anodizing Process of Aluminum, Surface and Coatings Technology, 200, 2634 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2005.07.065   DOI
21 S.K. Thamida, H. C. Chang, Nanoscale Pore Formation Dynamics during Aluminum Anodization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12, 240 (2022). Doi: https://doi.org/10.1063/1.1436499   DOI
22 J. A. Davies, B. Domeji, J. P. S. Pringle, F. Brown, The Migration of Metal and Oxygen during Anodic Film Formation, Jouranl of the Electrochemical Society, 112, 675 (1965). Doi: https://doi.org/10.1149/1.2423662   DOI
23 A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, Localized Alkaline Corrosion of Alloy AA5083 in neutral 3.5% NaCl Solution, Corrosion Science, 43, 1657 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00166-9   DOI
24 S. Wang, Y. Gu, Y. Geong, J. Liang, J. Zhao. J. Kang, Investigating Local Corrosion Behavior and Mechanism of MAO Coated 7075 Aluminum Alloy, Journal of Alloys and Compounds, 826, 153976 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.153976   DOI
25 J. Oh, C. V. Thompson, The Role of Electric Field in Pore Formation during Aluminum Anodization, Electrochimica Acta, 56, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002   DOI
26 B. Kasalica, J. Radic-Peric, M. Peric, M. Petkovic-Benazzouz, L. Belca, M. Sarvam, The Mechanism of Evolution of Microdischarges at the Beginning of the PEO Process on Aluminum, Surface and Coatings Technology, 298, 24 (2016). Doi: https://doi.org/10.1016/j.surfcoat.2016.04.044   DOI
27 C. Jeong, H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231   DOI
28 F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans, X. Duan, Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum, Angewandte Chemie, 120, 2500 (2008). Doi: https://doi.org/10.1002/ange.200704694   DOI
29 M. Mehdizade, M. Soltanieh, A. R. Eivani, Investigation of Anodizing time and Pulse Voltage Modes on the Corrosion Behavior of Nanostructured Anodic Layer in Commercial Pure Aluminum, Surface and Coatings Technology, 358, 741 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2018.08.046   DOI
30 L. Zaraska, G. D. Sulka, J. Szeremeta, M. Jaskula, Porous Anodic Alumina Formed by Anodization of Aluminum Alloy(AA1050) and High Purity Aluminum, Electrochimica Acta, 55, 4377 (2010). Doi: https://doi.org/10.1016/j.electacta.2009.12.054   DOI
31 S. De Souza, D. S. Yoshikawa, W. A. S. lzaltino, S. L. Assis, I. Costa, Self-assembling Molecules as Corrosion Inhibitors for 1050 Aluminum, Surface and Coatings Technology, 204, 3238 (2010). Doi: https://doi.org/10.1016/j.surfcoat.2010.03.021   DOI
32 R. Najjar, S. A. Katourani, M. G. Hosseini, Self-healing and Corrosion Protection performance of Organic Polysulfide @ Urea-formaldehyde Resin Core-shell Nanoparticles in Epoxy/PANI/ZnO Nanocomposite coatings on Anodized Aluminum Alloy, Progress in Organic Coatings, 124, 10 (2018). Doi: https://doi.org/10.1016/j.porgcoat.2018.08.015   DOI
33 J. Oh, C. V. Thompson, The Role of Electric Field in Pore Formation during Aluminum Anodization, Electrochimica Acta, 15, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002   DOI