• Title/Summary/Keyword: Corrosion of Rebar

Search Result 242, Processing Time 0.02 seconds

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Seismic Fragility Evaluation of Bridges Considering Rebar Corrosion (철근 부식을 고려한 교량의 지진취약도 평가)

  • Shin, Soobong;Kong, Sina;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.231-241
    • /
    • 2021
  • Although the deterioration of bridges may occur due to various causes, one of the representative causes is that the chloride used for deicing in the winter penetrates bridge members and results in corrosion. This study aims to quantify the ageing degree resulting from the corrosion of a bridge, apply it to the inelastic dynamic analysis model of the bridge, perform a seismic fragility analysis, and evaluate the relationship between the ageing degree and the seismic fragility curve. It is important to appropriately define the threshold values for each damage state in seismic fragility analyses considering the ageing degree. The damage state was defined using the results of existing experimental studies on the characteristics of the deterioration in the displacement ductility capacity of the pier, according to the ageing degree. Based on the seismic fragility analyses of six types of bridges divided by three types of bearing devices and two pier heights, it was found that the seismic vulnerability tends to increase with the ageing degree. The difference in seismic vulnerability with respect to the ageing degree exhibits a tendency to increase as the damage state progresses from slight to moderate, severe, and collapse.

Study of the design and mechanical performance of a GFRP-concrete composite deck

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Liu, Ruyue;Ke, Shoufeng
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.679-688
    • /
    • 2017
  • A GFRP-concrete composite bridge deck is presented in this paper. This composite deck is composed of concrete and a GFRP plate and is connected by GFRP perfobond (PBL) shear connectors with penetrating GFRP rebar. There are many outstanding advantages in mechanical behavior, corrosion resistance and durability of this composite deck over conventional reinforced concrete decks. To analyze the shear and flexural performance of this GFRP-concrete composite deck, a static loading experiment was carried out on seven specimens. The failure modes, strain development and ultimate bearing capacity were thoroughly examined. Based on elastic theory and strain-based theory, calculation methods for shear and flexural capacity were put forward and revised. The comparison of tested and theoretical capacity results showed that the proposed methods could effectively predict both the flexural and shear capacity of this composite deck. The ACI 440 methods were relatively conservative in predicting flexural capacity and excessively conservative in predicting shear capacity of this composite deck. The analysis of mechanical behavior and the design method can be used for the design of this composite deck and provides a significant foundation for further research.

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

The Condition Evaluation of Mortar Parts of Stupa of State Preceptor Jigwang from Wonju Beopcheonsa Temple Site by Half Cell Potential Measurement - with Focus on the Mortar Parts the RoofStone - (반전위 측정을 통한 원주 법천사지 지광국사탑 모르타르 복원부위 상태평가 연구 - 옥개석 모르타르 복원부위를 중심으로 -)

  • Lee, Tae Jong;Cho, Ha Jin;Park, Hee Jeong;Chae, Seung A
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.503-515
    • /
    • 2018
  • Stupa of State Preceptor Jigwang at Beopcheonsa temple site, Wonju, was conserved and restored in 1957. It was necessary to assess the degree of damage to the used mortar and to provide objective data on the necessity of its removal. Therefore, the HCP(half-cell potential) measurement used in concrete fields was applied. Multi-regression analysis of HCP data, following the rapid corrosion test of the roofstone mortar used by the rebar, resulted in a high correlation of HCP values(0.86), depending on the amount of corrosion and cover depth used for the steel bar. As a result, high correlation values(0.86) for the coefficients of determination were derived. The showed that the measurement of the wet conditions -431 to -663 mV on the roofstone indicated a corrosion damage rate of 90% or more after removal and restoration.

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method (분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.245-253
    • /
    • 2009
  • The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.

Development and Application of Anti-Corrosive Steel Using Electro-Deposition of Sea Water (2)- Evaluation of Application Rebar with Electro-Deposition Using Sea Water (해수전착 코팅을 이용한 내부식성 철근의 개발 및 적용성에 대한 연구 (2) -해수전착된 구조용 철근의 적용성 평가)

  • Kwon, Seung Jun;Lee, Sang Min;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.155-162
    • /
    • 2012
  • When RC (Reinforced Concrete) structures are exposed to sea water, steel corrosion can occur and this leads a degradation of structural performance. Referring the electro-deposition system with sea water from the 1st step research, durability and structural performance are evaluated in coated steel and RC members containing it in the 2nd research. In the durability performance test, Half Cell Potential test is performed and the coated steel is evaluated to have the high resistance to corrosion, which shows only 35% of corrosion velocity in normal (bare) steel. In the structural performance test, tensile strength, adhesive strength, and flexural/shear in RC member are performed. For the electro-deposit coated steel, increasing ratios of 3.2% and 8.8% are evaluated in the test of tensile strength and adhesive strength, respectively. For the structural test in RC member, there is no big difference between RC members with coated and non-coated steel in ultimate load and failure pattern It is evaluated that the chemical compound with $CaCO_3$ and $Mg(OH)_2$ from electro-deposition causes slightly increased structural performance. The electro-deposit coated steel can be more widely applied after performance verification from several tests like fatigue, resistance to impact, and long term-submerging test.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

The Study on Salt Injury and Carbonation of Reinforced-Concrete (철근콘크리트의 염해와 중성화 피해 사례 연구)

  • Kim, Dong-Hun;Lim, Nam-Gi;Lee, Sang-Beam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 2002
  • A reinforced concrete building neighboring in Pusan or Ulsan where is directly exposed to salt water contrasting with other in land areas contains much salt content percolated from the outside that the high salt content percolates and diffuses through the inside of reinforced concrete; therefore, an immovable tunic surrounding it begins to be destroyed and eroded with high speed. At the time, the cross-sectional area and volume expansion of re-bar reinforcing result in being cracks make a rapid progress gradually until they appear in the surface of the one, the phenomenon such as being a thin layer or falling off the part of it causes a lowering of its durability and might collapse the concrete construction. So far, we've investigated into salt content of reinforced concrete constructions neighboring in a seaside district and damage by carbonation, and we came to a conclusion as follows: $\circled1$ Under the oceanic circumstance a concrete construction is influenced by sea water directly that contains much amount of salt content contrasting with other constructions on inland areas. $\circled2$ Because of chloride penetration the carbonation of reinforced concrete made a rapid progress until more than the covering thickness of re-bar. $\circled3$ An old reinforced concrete building which has been piled up salt injury and proceeding the carbonation of its cross-sectional area. $\circled4$ According to rapidly cracking from the inside to surface of reiforced concrete, the phenomenon of being a thin layer or falling off the part of reinforced concrete results in a lowering of durability and shortening the life-time of concrete construction itself.

Influence of Reinforcements on the Chloride Diffusion Analysis of Concrete Structures (철근의 영향을 고려한 콘크리트 구조물의 염소이온 확산해석)

  • 오병환;장봉석;이명규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.883-891
    • /
    • 2002
  • The chloride penetration in concrete structures is influenced by many factors such as types of cement and admixture proportion. Therefore, the effects of these factors on chloride diffusion must be correctly considered. The conventional diffusion analysis also neglected the existence of reinforcing bar in concrete structures. The purpose of the present paper is therefore to investigate the effect of reinforcing bar on the chloride diffusion in concrete structures. For this purpose, a comprehensive finite element analyses have been conducted to obtain chloride penetration profile. The results indicate that the chlorides are accumulated in front of a reinforcing bar and that the accumulation is much larger for the case of large diameter bars. The higher accumulation of chloride at bar location causes much faster corrosion of reinforcing steel. It can be concluded from the present study that the effects of reinforcing bars must be considered in chloride diffusion analysis for more realistic prediction of durable life of concrete structures.