• 제목/요약/키워드: Corrosion inhibitor

검색결과 224건 처리시간 0.023초

Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

  • Zeng, L.;Zhang, G.A.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.23-30
    • /
    • 2017
  • The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.

Ginger Extract as Green Corrosion Inhibitor for Steel in Sulfide Polluted Salt Water

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Ibrahim, Mohamed;Fakih, Mohamed
    • 대한화학회지
    • /
    • 제57권2호
    • /
    • pp.272-278
    • /
    • 2013
  • Extract of ginger has been evaluated as a green inhibitor for the corrosion of steel in sulfide polluted NaCl solution using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. Potentiodynamic polarization measurements showed that this extract acts as a mixed type inhibitor but mainly inhibits the cathodic reaction. The inhibition efficiency was found to increase with inhibitor concentration reaching to approximately 83.9% using 250 ppm of ginger. Nyquist plots show a single capacitive loop in uninhibited and inhibited solutions. From EFM the causality factors are very close to theoretical values which indicate that the measured data are of good quality. The adsorption process of the studied extract on steel surface obeys Temkin adsorption isotherm. The results obtained from the different electrochemical techniques were in good agreement which prove the validity of these tools in measurement of corrosion rate. Ginger extract has no effect on Escherichia Coli and can be applied safely on waste water treatment plants.

Review of the Usefulness of Inhibitors for Reducing the Corrosion of Iron in $H_2S$ Environments

  • Kim, Han-Sang;Yoon, Eun-Sub
    • Corrosion Science and Technology
    • /
    • 제8권1호
    • /
    • pp.21-26
    • /
    • 2009
  • The influence of $H_2S$ on the corrosion of iron and the corrosion prevention mechanism of an inhibitor was investigated with a differential capacitance measurement and a weight loss measurement method. The results show that $H_2S$ accelerates both the anodic iron dissolution and the cathodic hydrogen evolution in most cases. However, $H_2S$ acts as an inhibitor of the corrosion of iron under certain special conditions. An EIS method is proposed to explain the ability of inhibitors.

철근방식을 위한 방청제의 성능 평가에 관한 연구 (Evaluation and Application of Anti-Corrosion Inhibitor for the Corrosion Protection of Reinforcing Bars)

  • 김상철;강승희;이두재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.248-253
    • /
    • 1997
  • The study was carried out to evaluate material characteristics and environmental effects of anti-corrosion inhibitor which is known to be very easy to use, since the admixture is added during concrete mixing. Specimens were fabricate with 6 different dosages of anti-corrosion inhibitor and cured in the autoclave chamber with different number of cycles. As a result of measuring corrosion of reinforcing bars embedded in concrete, it was found that even small amount of admixture application can prevent reinforcing bars from corrosion and the efficiency is gradually decreased with increase of the number of autoclave cycles and of percentage of chloride content. In addition, the admixture will not affect material characteristics such as compressive strength and air content.

  • PDF

하이드로탈사이트계 방청제를 혼입한 콘크리트의 염화물확산계수 및 철근부식특성 (Chloride Diffusion Coefficient and Steel Corrosion Properties of Concrete containing Hydrotalcite-based Corrosion Inhibitor)

  • 강인영;김규용;윤민호;황의철;서원우;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.90-91
    • /
    • 2017
  • Concrete can be used semi-permanently unless the steel is corroded. However, the concrete exposed to the marine environment is exposed to sea breeze, so chloride ions penetrate into the concrete and the steel is corroded accordingly. In order to solve these problems, there is a method of increasing the covering depth of the concrete and an application of the epoxy paint to the steel. In this study, the hydrotalcite type corrosion inhibitor was mixed with the concrete and the compressive strength, chloride diffusion coefficient and the corrosion properties of the steel were examined.

  • PDF

Impedance Spectroscopy Studies on Corrosion Inhibition Behavior of Synthesized N,N’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine for API-5L-X65 Steel in HCl Solution

  • Danaee, I.;Bahramipanah, N.;Moradi, S.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.153-160
    • /
    • 2016
  • The inhibition ability of N,N-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine (DHBP) as a schiff base against the corrosion of API-5L-X65 steel in 1 M HCl solution was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy. Electrochemical impedance studies indicated that DHBP inhibited corrosion by blocking the active corrosion sites. The inhibition efficiency increased with increasing inhibitor concentrations. EIS data was analysed to equivalent circuit model and showed that the charge transfer resistance of steel increased with increasing inhibitor concentration whilst the double layer capacitance decreased. The adsorption of this compound obeyed the Langmuir adsorption isotherm. Gibbs free energy of adsorption was calculated and indicated that adsorption occurred through physical and spontaneous process. The corrosion inhibition mechanism was studied by potential of zero charge. Polarization studies indicated that DHBP retards both the cathodic and anodic reactions through adsorption on steel surface. Scanning electron microscopy was used to study the steel surface with and without inhibitor.

The Influence of H+ and Cl- Ions on the Corrosion Inhibitive Effect of Poly(para-aminophenol) for Iron in Hydrochloric acid

  • Manivel, P.
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.187-193
    • /
    • 2017
  • Polymer amines are found to show distinct corrosion inhibition effects in acidic media. The functional groups of organic compounds have a wide role in the physical and chemical properties, for the inhibition efficiency with respect to steric factors, aromaticity, and electron density. The influence of $H^+$ ions and $Cl^-$ ions on the corrosion inhibitive effect of poly(p-aminophenol) for iron in hydrochloric acid was studied using electrochemical methods such as impedance, linear polarization, and Tafel polarization techniques. The experiments were conducted with and without the inhibitor, poly(p-aminophenol). The concentration range of $H^+$ ions and $Cl^-$ ions are from 1 M to 0.05 M and 1 M to 0.1 M, respectively. With the inhibitor poly(p-aminophenol), this study shows that inhibition efficiency decreases with the reduction of $H^+$ ion and $Cl^-$ ion concentrations in aqueous solution. Further, it reveals that the adsorption of an inhibitor on the surface of iron is dependent on the concentrations of $H^+$ and $Cl^-$ ions in the solution and the adsorption of inhibitor on the iron surface through the cationic form of amine.

부식 및 스케일 억제제에 의한 냉각수 수질향상 (Improvement of Cooling Water Quality by Corrosion and Scale Inhibitor)

  • 조관형;우달식;황병기
    • 한국환경과학회지
    • /
    • 제18권2호
    • /
    • pp.187-195
    • /
    • 2009
  • This study was investigated to control the corrosion and scale at the cooling water system in steel works. Laboratory and field tests were performed for the indirect cooling water system of plate mill. Throughout the experiment, various factors such as leakage of pipes, heating rate and capacity, and the reaction between existing and substitute inhibitors were carefully monitored. The results showed that the harmful effect of high temperature could be minimized, and satisfactory corrosion/scale controls were effectively achieved using inhibitor, even at the increased temperature of $80^{\circ}C$. The batch and field tests in the gas scrubbing cooling water system of blast furnace and cooling water system of corex plant indicated that the new inhibitor was more effective for the prevention of corrosion and scale than the existing one.

부식억제제로 모노에탄올아민을 사용한 금속의 전기화학적 특성 (Electrochemistry Characterization of Metal Using Monoethanolamine as Corrosion Inhibitor)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.88-94
    • /
    • 2012
  • 순환전압전류법을 사용하여 전류-전압 곡선을 측정하였다. 전기화학적 특성과 금속의 표면상태간의 관계는 전자현미경(SEM)을 사용하여 조사하였다. 그리고 순환전압전류법에 의한 전기화학적 측정은 3 전극 시스템을 사용하였다. 측정 범위는 초기 포텐셜에서 -1350 mV까지 환원시키고, 연속적으로 1650 mV까지 산화시키고, 다시 초기지점으로 환원시켜 측정하였다. 스캔속도는 50, 100, 150, 200 및 250 mV/s를 선정하였다. 그 결과, 부식억제로 모노에탄올아민(MEA)을 사용하여 금속의 C-V 특성은 순환전압전류법으로부터 산화 전류에 기인한 비가역 공정으로 나타났다. 부식억제제로 MEA을 사용하였을 경우에는 전해질의 농도가 증가할수록 확산계수가 감소하는 경향을 나타내었다. 그리고 구리의 SEM 이미지를 보면, 전해질 농도를 증가시키면 표면부식은 증가하였다. 부식억제제로 $1.0{\times}10^{-3}M$ MEA를 첨가시키면, 전해질 농도 0.1 N의 경우 확산계수가 상대적으로 커서 부식억제 효과가 적었다.

Cu CMP에서 Corrosion Inhibitor에 의한 연마 특성 분석 (Analysis of Cu CMP according to Corrosion Inhibitor Concentration)

  • 주석배;이현섭;김영민;조한철;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.113-113
    • /
    • 2008
  • Cu CMP (Chemical Mechanical Planarization) has been used to remove copper film and obtain a planar surface which is essential for the semiconductor devices. Generally, it is known that chemical reaction is a dominant factor in Cu CMP comparing to Silicon dioxide CMP. Therefore, Cu CMP slurry has been regarded as an important factor in the entire process. This investigation focused on understanding the effect of corrosion inhibitor on copper surface and CMP results. Benzotriazole (BTA) was used as a corrosion inhibitor in this experiment. For the surface analysis, electrochemical characteristics of Cu was measured by a potentiostat and surface modification was investigated by X-ray photoelectron spectroscopy (XPS). As a result, corrosion potential (Ecorr) increased and nitrogen concentration ratio on the copper surface also increased with BTA concentration. These results indicate that BTA prevents Cu surface from corrosion and forms Cu-BTA layer on Cu surface. CMP results are also well matched with these results. Material removal rate (MRR) decreased with BTA concentration and static etch rate also showed same trend. Consequently, adjustment of BTA concentration can give us control of step height variation and furthermore, this can be applicable for Cu pattern CMP.

  • PDF