• Title/Summary/Keyword: Corrosion in chloride environment

Search Result 204, Processing Time 0.022 seconds

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

Corrosion Protection of Rebars Using High Durability Polymer Cementitious Materials for Environmental Load Reduction (환경부하저감형 고내구성 폴리머 시멘트계 재료를 이용한 철근 부식저감기술)

  • Kim, Wan-Ki;Chung, Seung-Jin
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.131-137
    • /
    • 2010
  • The building industry must aim at high-durability and sustainability. A holistic life cycle based approach is recommended to reduce the environmental load. In recent years, technical innovations in the construction industry have advanced to a great extent, and caused the active research and development of high-performance and multifunctional construction materials. Nowadays, various polymer powders have been commercialized to manufacture construction materials in the form of prepackaged-type products, which have rapidly been developed for lack of skilled workmen in construction sites. Recently, terpolymer powders of improved quality have been developed and commercialized as cement modifiers. And, hydrocalumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. The purpose of this study is to ascertain the self-corrosion inhibition function of polymer-modified mortars using redispersible powders with hydrocalumite. Polymer-modified mortars using VA/E/MMA and VAE redispersible powders are prepared with various calumite contents and polymer-binder ratios, and tested for chloride ion penetration depth, corrosion inhibition. As a result, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with hydrocalumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars. Anti-corrosion effect of polymer-modified mortars using VA/E/MMA terpolymer powder with hydrocalumite is higher than that of VAE copolymer powder.

Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitors

  • Bae Su-Ho;Chung Young-Soo;Kim Dae-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.145-150
    • /
    • 2002
  • Reinforced concrete is inherently a durable composite material. When properly designed for the environment to be exposed and carefully constructed, reinforced concrete is capable of giving maintenance-free performance. However, unintentionally using improper materials such as non-washed sea sand having much salt together with poor controlled quality, or the concrete are placed in highly severe environment such as marine atmosphere, the corrosion of reinforcing steel in concrete becomes one of the most significant concerns of concrete. The purpose of this experimental research is to evaluate the performance of corrosion inhibitors for normal strength and high strength concrete, and to propose desirable measures for controlling corrosion of reinforcing steel in concrete. Test specimens in normal strength and high strength concrete were made with and without corrosion inhibitors. The accelerated corrosion test for reinforcing steel in concrete was adopted in accordance with JCI-SC3, which required the periodic 20 cycles for 140 days. One cycle includes 3 days for the wetting condition of $65^{\circ}C$ and $90\%$ RH, and 4 days for the drying condition of $15^{\circ}C\;and\;60\%$ RH. It was observed from the test that corrosion inhibitors in normal strength concrete and high strength concrete showed excellent corrosion resistance for reinforcing steel in concrete, but the silica fume in high strength concrete was found to have a negligible corrosion resistance if not used with corrosion inhibitors, since the chloride corrosion threshold limit in concrete containing silica fume without corrosion inhibitor was found to be considerably smaller than that of the case with corrosion inhibitor.

  • PDF

Corrosion Failure Analysis of Flow Plate in Plate Heat Exchanger (판형 열교환기 전열판의 부식 파손 분석)

  • Song, Min Ji;Choi, Gahyun;Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.204-209
    • /
    • 2021
  • Corrosion failure analysis of the flow plate, which is one of the accessories of the plate heat exchanger in a district heating system, was performed. The flow plate is made of 316 stainless steel, and water at different temperatures in the flow plate exchanges heat in a non-contact manner. The flow plate samples in which water mixing issues occurred were collected. Corrosion-induced pits, oxides, and contaminants were observed at locations where two plates are regularly in contact. The EDS analysis of the surface oxides and contaminants revealed that they were composed of carbon, silicon, and magnesium, which came from chemical adhesives. The IC/ICP analyses showed that the concentration of chloride ions was 30 ~ 40 ppm, which was not sufficient to cause corrosion of stainless steel. In the crevice, a local decrease in dissolved oxygen occurs along with an increase in chloride ions, thus forming an acidic environment. These environments destroyed the passive film of stainless steel, resulting in pits. Moreover, contaminants formed a narrower gap between the two metal plates and inhibited the diffusion of ions, thereby accelerating crevice corrosion.

Evaluation on De-Icing Salts Laden Environment of Road in Seoul (제설제에 노출된 서울시내 도로 시설물의 열화 환경 분석)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • De -icing salts have been used commonly in areas where snow or ice is a seasonal safety hazard for roadway, however, the salts is one of main causes on serious deterioration of road infrastructures in crowded urban city like Seoul. In order to establish maintenance strategy of road infrastructures under de-icing salts laden environment, it is necessary to examine environmental characteristics and its response to the existing facilities. The purpose of this study is to evaluate the deterioration environment of road infrastructures. Additional purpose is to develop a design model and details for durability design of infrastructures under de-icing salts laden environment, considering mainly a build-up rate of surface chlorides. Concentration of external chloride solution and surface chloride content were calculated at the level of average de-icing salts for 5 years, ratio of auxiliary road of 17.5 to 30%, and effective exposure area to snow 50 to 80%. The chloride build-up rate was 0.073 ~ 0.077% / year and the maximum surface chloride content was calculated to be 2.2 ~ 2.31% by concrete wt. This study is expected to be used for establishing integrated strategy of road infrastructures, such as predicting chloride profiles or degree of chemical corrosion to exposure concrete.

A Study on the Corrosion Inhibition Effects of Sodium Heptanoate for Carbon Steel in Aqueous Solution

  • Won, D.S.;Kho, Y.T.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • The carboxylates as a corrosion inhibitor has been studied by many researchers because of its environmental safety and low depletion rate. However, conventional test methods of inhibitor such as weight loss measurements, linear polarization resistance and corrosion potential monitoring etc., evaluate uniform corrosion of metals. These methods are unable to evaluate crevice-related corrosions, which are encountered in most of heat exchanging facilities. In order to choose the optimum corrosion inhibitor, the appropriate test methods are required to evaluate their performances in service environment. From this point of view, polarization technique was used to evaluate the characteristics of sodium heptanoate on corrosion behavior for carbon steel. Especially a thin film crevice sensor technique were applied to simulate the crevice corrosion in this study. From these experiments, we found that oxygen as an oxidizing agent was required to obtain stable passive film on the metal. Presence of oxygen, however, accelerated crevice corrosion. Potential shift by oxygen depletion and weakened inhibitive film inside the crevice were responsible for such accelerated feature. It is shown that film for corrosion inhibition is a mixture of sodium heptanoate and iron (II) heptanoate as reaction product of iron surface and sodium heptanoate. The iron (II) heptanoate which has been synthesized by reaction of heptanoic acid and ferrous chloride in methanol solution forms bidentate complex.

Research for Corrosion Protection System of Embedded steels for Reinforced Condrete Exposed to Chloride Environments. (염해환경하 콘크리트의 철근방식공법 연구)

  • 문홍식;류금성;정영수;박희상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.281-284
    • /
    • 1999
  • Bridge structure is known as one of important infrafacilities for comfortable human life. Recent long-span bridges, such as Kwang-Ahn Grand bridge, S대-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the seaside without in-depth consideration of concrete durability problems, It is in particular noted that corrosion of reinforcement steel in concrete is very important for the durability enhancement of concrete structures. The objective of this experimental study is to investigate the corrosion degree of reinforcing steels in concrete specimens which are exposed to cyclic wet and dry saltwaters, and then to develop pertinent corrosion protection system such as rational cover depth, corrosion inhibitors, cathodic system for reinforced concrete bridges exposed to marine environment.

  • PDF

An Experimental Study for a Fatigue-Bond Behavior of RC Structures Considering a Reinforcement Corrosion and a Fatigue Loading (철근 부식 및 피로하중을 고려한 철근 콘크리트 구조물의 피로-부착거동에 관한 실험적 연구)

  • Jung, Ha-Tae;Choi, Seung-Won;Kim, Sae-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.274-277
    • /
    • 2006
  • There are many structures attacked by chloride ions near a marine environment. And they are attacked by a salt of de-icing chemicals. So, the embedded reinforcement is corroded. In the same time, these are under a fatigue loading by a traffic loading in bridges. In previous studies, there are many researches that deal with a bond behavior under a monotonic loading according to the rate of a steel corrosion. But there are most cases that the steel corrosion and the repeated loading are acted on structures simultaneously. So, in this study, it is investigated a fatigue-bond behavior of RC structures under a steel corrosion and a fatigue loading. Main variables of the test are a corrosion of steel reinforcement and a level of stress.

  • PDF

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.