• 제목/요약/키워드: Corrosion Rate

검색결과 1,272건 처리시간 0.02초

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구 (Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

니켈 합금 모재 및 용접재의 일차수응력부식균열 균열성장속도 시험 (Primary Water Stress Corrosion Crack Growth Rate Tests for Base Metal and Weld of Ni-Cr-Fe Alloy)

  • 이종훈
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.33-38
    • /
    • 2019
  • Alloy 600/182 with excellent mechanical/chemical properties have been utilized for nuclear power plants. Although both alloys are known to have superior corrosion resistance, stress corrosion cracking failure has been an issue in primary water environment of nuclear power plants. Therefore, primary water stress corrosion crack (PWSCC) growth rate tests were conducted to investigate crack growth properties of Alloy 600/182. To investigate PWSCC growth rate, test facilities including water chemistry loop, autoclave, and loading system were constructed. In PWSCC crack growth rate tests, half compact-tension specimens were manufactured. These specimens were then placed inside of the autoclave connected to the loop to provide primary water environment. Tested conditions were set at temperature of $360^{\circ}C$ and pressure of 20MPa. Real time crack growth rates of specimens inside the autoclave were measured by Direct Current potential drop (DCPD) method. To confirm inter-granular (IG) crack as a characteristic of PWSCC, fracture surfaces of tested specimens were observed by SEM. Finally, crack growth rate was derived in a specific stress intensity factor (K) range and similarity with overseas database was identified.

Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions

  • Lim, Yun Soo;Hwang, Seong Sik;Kim, Dong Jin;Lee, Jong Yeon
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1222-1230
    • /
    • 2020
  • The corrosion rates of the reactor pressure vessel materials of SA508 Grade 3 were measured using a weight loss method in aerated boric acid solutions to simulate the evaporation of leaked PWR primary water in an ambient environment. The corrosion behavior and products were examined using X-ray diffraction and electron microscopy. SA508 showed typical general corrosion characteristics. The corrosion rate increased steadily as the boron concentration was increased. As the immersion time elapsed, the corrosion rate slowly or rapidly decreased according to the oxidation reaction of iron. The corrosion rate showed a complicated pattern depending on the temperature; it increased gradually and then rapidly decreased again when reaching a certain transition temperature. The corrosion products of SA508 were found to be FeO(OH), Fe2O3, and Fe3O4. As the boron concentration decreased and the temperature was increased, the formation of Fe3O4 was more favorable as compared to the formation of FeO(OH) and Fe2O3. Consequently, the changes of the corrosion rate and behavior were closely related to the oxidation reaction of iron on the surface. The corrosive damage to SA508 appears to be most severe when the oxidation reaction is such that Fe2O3 forms as a corrosion product.

내열강의 고온부식특성에 대한 크롬함량의 영향 (Hot Corrosion Properties of Heat Resistant Chrome Steels)

  • 이한상;정진성;유근봉;김의현
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.277-288
    • /
    • 2010
  • The hot corrosion properties of heat-resistant steels were investigated in an oxidation atmosphere including artificial ash and sulfur dioxide. The heat-resistant steels of T22, T92, T122, T347HFG, Super304H and HR3C were evaluated at 620, 670 and $720^{\circ}C$ for 400 hours. The relationship between the corrosion rate and the temperature followed a bell-shaped curve with a peak rate at around $670^{\circ}C$. The corrosion rates showed a decreasing tendency as the chrome contents of these steels increased from 2.15 wt.% to 24.5 wt.%, and austenitic steels had a lower corrosion rate than ferritic steels. Sulfidation by $SO_2$ as well as molten salt corrosion also had an effect on the total corrosion rate, especially showing an increase in the corrosion rate in ferritic steels. Regardless of the chrome content in the steels and irrespective of the test temperature, the corrosion scale was composed of an outer oxide and an artificial ash mixed layer, a middle oxide layer and inner sulfide, and a mixed oxide layer. As the chrome content increased, the proportion of chrome oxide in the corrosion scale increased. Before spalling of the corrosion scale, voids and cracks were initiated in the sulfide and the mixed oxide layer or at the interface with the substrate.

강제어촌의 부식특성과 그 방식에 관한 연구 (Study on the Corrosion Charactristics and its Corrosion Protection of Steel Fishing Banks)

  • 임우조;이종락
    • 수산해양기술연구
    • /
    • 제28권2호
    • /
    • pp.216-227
    • /
    • 1992
  • The corrosion rate, behavior of corrosion fatigue and characteristic of cathodic protection for SB41 were investigated by corrosion and corrosion control tests in seawater at laboratory and coast. The main result obtained are as the following; 1) The corrosion rate of base metal (BM) is about 28-37 mg/dm super(2) day in seawater of coast. 2) The correlation between the stress intensity factor range $\Delta$K and crack propagation rate da/dN for weldment follows paris' rule in seawater : da/dN=C($\Delta$K) super(m) where m is the slope of the correlation, and is 2.02 for BM and 1.75 for heat affected zone (HAZ) respectively. 3) The corrosion sensitivity of HAZ is more sensitive than that of BM under the low region of $\Delta$K. 4) With increase of bared surace area of cathode, cathodic protection potential is increased sharply.

  • PDF

스테인리스강과 탄소강 용접부의 부식거동 해석 (Corrosion Behavior Analysis of the Weld Joint between Stainless Steel and Carbon Steel)

  • 권재도;이우호;김길수;장순식;진영준
    • Journal of Welding and Joining
    • /
    • 제17권3호
    • /
    • pp.66-70
    • /
    • 1999
  • In order to investigate the quantitative behavior of galvanic corrosion in weld joints between stainless std이 and carbon steel, electrochemical polarization experiments were performed at pH4, pH7 and pH10 with boric acid concentration 4000ppm, and water temperature were selected as $35^{\circ}$C and $60^{\circ}$C. As the results, the galvanic corrosion phenomena of carbon steel weld material at $60^{\circ}$C was revealed $2{1\over2}$ times higher corrosion rate than that at $35^{\circ}$C condition. The corrosion rate of stainless steel was almost inedependent of the variation of pH. The significant corrosion rates of carbon steel and the weld joint of carbon-carbon steel were observed at pH 4.

  • PDF

Corrosion Resistance Properties of Rice Husk Ash Blended Concrete

  • Ganesan, K.;Rajagopal, K.;Thangavel, K.
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.12-17
    • /
    • 2007
  • Portland cement incorporating supplementary cementing material develops excellent mechanical properties and long term durability characteristics. India is a leading rice producing country and rice husk is considered as waste in the rice milling industries. In this present work, the rice husk ash (RHA) was added to concrete as cement replacement from 0 to 30%. Corrosion performance of reinforcing steel embedded in RHA blended concretes was studied using linear polarization, AC impedance and gravimetric methods. The corrosion rate of steel bars embedded in RHA concretes were compared with control concrete. The results clearly indicate that the corrosion rate of reinforcing steel embedded in concrete is significantly reduced with the incorporation of RHA. A good correlation among gravimetric method and electrochemical methods was observed. Electrochemical impedance study showed 98 percentage reduction in corrosion rate to the RHA blended concrete with 15% replacement than control concrete.

유체환경 중에서 연강재의 간극부식에 관한 연구 (Study on the Crevice Corrosion of Mild Steel in Fluid Environment)

  • 임우조;윤병두
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.373-378
    • /
    • 2000
  • The crevice corrosion of local corrosion occur when the gap exist on metal surface. This crevice corrosion happen to region such as flange of pipe, contact part of casing, under gasket and packing, between valve disk and seat of pump etc. Especially The crevice corrosion of mild steel(SS 400) get serious. This paper was studied on the crevice corrosion of SS 400 in fluid environment. In $0\%,\;2\%,\;3.5\%,\;5\% NaCl$ solution, the aspect of the crevice corrosion and polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 with crevice and non-crevice was measured according to the NaCl concentration. The main results obtained are as follows : 1) Under crevice corrosion, the corrosion potential become less noble as the concentration of NaCl solution increased. 2) The current density under open circuit potential was high drained as concentration of NaCl solution increased by $3.5\%$ but the concentration increased over $3.5\%$, the current density was low drained. 3) The weight loss rate of SS 400 was increased as concentration of NaCl solution Increased by $3.5\%$, but the concentration increased over $3.5\%$, that of SS 400 was decreased. 4) Effect of oxygen for crevice corrosion in the concentration of $3.5\%$ NaCl solution become sensitive than that $0\%$ NaCl solution.

  • PDF

3.5% NaCl 수용액 중에서의 금속과 GECM의 갈바닉 부식에 미치는 면적비의 영향 (Effect of Area Ratio on Galvanic Corrosion Between Metallic Materials and GECM in 3.5% NaCl Solution)

  • 김영식;임현권;손영일;유영란;장현영
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.39-47
    • /
    • 2010
  • Galvanic coupling between GECM(graphite epoxy composite material) and metallic materials can facilitate corrosion of metals and alloys because GECM is noble and electrically conductive. Galvanic corrosion is affected by many factors including metallic materials, area ratio, surface condition, and corrosivity. This work aims to evaluate the effect of area ratio on galvanic corrosion between GECM and several metals. In the case of glavanic coupling of carbon steel and Al to GECM, corrosion rate increased with increasing area ratio. Corrosion rate of sensitized STS 316S stainless steel decreased a little at an area ratio 1:1 but increased at an area ratio 30:1. It is considered to be due to that area ratio affects galvanic corrosion more in less corrosion resistant alloys. However, in case of STS 316 and Ti, galvanic coupling reduces corrosion rate by the formation of passive film.