• 제목/요약/키워드: Corrosion Properties

검색결과 1,752건 처리시간 0.032초

Application of Neural Networks in Aluminum Corrosion

  • Powers, John;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.157-172
    • /
    • 2000
  • Metal containers represent a situation where a specific metal is exposed to a wide variety of electrolytes of varying degrees of corrosivity. For example, hundreds, if not thousands of different products are packaged in an aluminum beverage can. These products vary in pH, chloride concentration and other natural or artificial ingredients which can effect the type and severity of potential corrosion. Both localized (perforation) and uniform corrosion (metal dissolution without the onset of pitting) may occur in the can. A quick test or series of tests which could predict the propensity towards both types of corrosion would be useful to the manufacturer. Electrochemical noise data is used to detect the onset and continuation of pitting corrosion. Specific noise parameters such as the noise resistance (the potential noise divided by the current noise) have been used to both detect pitting corrosion and also to estimate the pitting severity. The utility of noise resistance and other electrochemical parameters has been explored through the application of artificial neural networks. The versatility of artificial neural networks is further demonstrated by combing electrochemical data with electrolyte properties such as pH and chloride concentration to predict both the severity of both localized and uniform corrosion.

  • PDF

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.

타이타늄 합금에서 산소발생전위 지연이 부동태 피막 특성과 국부부식 저항성에 미치는 영향 (Effect of Delayed Oxygen Evolution in Anodic Polarization on the Passive Film Characteristic and Localized Corrosion Resistance of Titanium Alloys)

  • 오유수;서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2020
  • The objective of this study was to investigate delayed oxygen evolution and localized corrosion resistance of titanium alloys by performing potentiodynamic polarization, potentiostatic polarization, and Mott-Schottky measurements. Delayed oxygen evolution was compared among titanium alloys, 316 stainless steel, and platinum. Difference in delayed oxygen evolution between titanium alloys and other metals was attributed to specific surface characteristic of each metal. Delayed oxygen evolution of titanium alloys resulted from the predominant process of ionic conduction over electronic conduction. The effect of oxygen evolution on localized corrosion of titanium alloys was investigated using electrochemical critical localized corrosion temperature (E-CLCT) technique. Mott-Schottky measurement was performed to clarify the difference in film properties between titanium alloys and stainless steels. Titanium alloys were found to have much lower donor density than stainless steels by 1/28. These results indicate that delayed oxygen evolution has little influence on the concreteness of passive film and the resistance to localized corrosion of titanium alloys.

Application of Electromagnetic Fields to Improve the Removal Rate of Radioactive Corrosion Products

  • Kong, Tae-Young;Lee, Kun-Jai;Song, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.549-558
    • /
    • 2004
  • TTo comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plant. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of axial offset anomaly (AOA). Hence, there is a great deal of ongoing research on water chermistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion products demonstrated a removal efficiency of over 90% for particles above 5${\mu}m$. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5${\mu}m$ in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products.

Nb 및 Cr 첨가에 따른 지르코늄 합금의 부식거동 (Corrosion Behavior of Zirconium Alloys with Nb and Cr Addition)

  • 김윤호;목용균;김현길;이종현
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.376-385
    • /
    • 2015
  • The effects of Nb and Cr addition on the microstructure, corrosion and oxide characteristics of Zr based alloys were investigated. The corrosion tests were performed in a pressurized water reactor simulated-loop system at $360^{\circ}C$. The microstructures were examined using OM and TEM, and the oxide properties were characterized by low-angle X-ray diffraction and TEM. The corrosion test results up to 360 days revealed that the corrosion rates were considerably affected by Cr content but not Nb content. The corrosion resistance of the Zr-xNb-0.1Sn-yCr quaternary alloys was improved by an increasing Nb/Cr ratio. The crystal structure of the precipitates was affected by a variation of the Nb/Cr ratio. The Zr-Nb beta-enriched precipitates were mainly formed in the high Nb/Cr ratio alloy while $Zr(NbCr)_2$ precipitates were frequently observed in the low Nb/Cr ratio alloy. The studies of oxide characteristics revealed that the corrosion resistance was related to the crystal structure of the precipitate.

불소 첨가/미첨가 인공타액 용액에서 연마 및 마스킹 조건이 적층제조 Ti-6Al-4V 합금의 동전위분극시험 결과에 미치는 영향 (Effects of Grinding and Masking Conditions on the Potentiodynamic Polarization Curves of Additively Manufactured Ti-6Al-4V Alloy in Artificial Saliva Solution with or Without Fluoride Ions)

  • 안경빈;장희진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.475-483
    • /
    • 2021
  • Additively manufactured titanium alloy is one of the promising materials in advanced medical industries. However, these additively manufactured alloys show corrosion properties different from those of conventional materials due to their unique microstructure. In this study, the effect of surface roughness and masking conditions on the results of the potentiodynamic polarization tests on additively manufactured or conventional Ti-6Al-4V alloys in artificial saliva solution with or without fluoride was investigated. The results showed that the corrosion potential was slightly lower with a flat cell with an O-ring than with masking tape. The corrosion rate was decreased with decreases in the surface roughness. Localized corrosion involving delamination of the surface layer occurred at 7 ~ 9 V (SSC) on the additively manufactured alloy in solution with or without fluoride when the samples were finished with 1000-grit SiC paper, whereas localized corrosion was not observed in the specimens finished with 1-㎛ alumina paste.

불특정 공식손상을 가진 316L 스테인리스강의 기계적 물성치 예측을 위한 다중선형회귀 적용 (Application of Multiple Linear Regression to Predict Mechanical Properties of 316L Stainless Steel with Unspecified Pit Corrosion)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.55-63
    • /
    • 2023
  • The aim of this study was to propose a multiple linear regression (MLR) equation to predict ultimate tensile strength (UTS) of 316L stainless steel with unspecified pit corrosion. Tensile specimens with pit corrosion were prepared using a potentiostatic acceleration test method. Pit corrosion was characterized by measuring ten factors using a confocal laser microscope. Data were collected from 22 tensile tests. At 85% confidence level, total pit volume, maximum pit depth, mean ratio of surface area, and mean area were significant factors showing linear relationships with UTS. The MLR equation using these three significant factors at a 85% confidence level showed considerable prediction performance for UTS. Determination coefficient (R2) was 0.903 with training and test data sets. The yield strength ratio of 316L stainless steel was found to be around 0.85. All specimens with a pit corrosion presented a yield ratio of approximately 0.85 with R2 of 0.998. Therefore, pit corrosion did not affect the yield ratio.

Improving the concrete quality and controlling corrosion of rebar embedded in concrete via the synthesis of titanium oxide and silica nanoparticles

  • Jundong Wu;Yan Cui
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2023
  • Concrete is one of the most widely used structure materials. Concrete is like the motor of the construction industry. The remarkable feature of this Concrete is its cheapness and low energy consumption. Concrete alone does not show resistance against any force but only against compressive forces. Therefore, steel rebar product is used as a reinforcement and increase the strength of Concrete. It can be done by putting rebar in Concrete in different ways. Rebar rusting is one of the crucial symptoms that cause swift destruction in reinforced structures-factors such as moisture in concrete increase the steel corrosion rate. In most cases, it is difficult to compensate for the damage caused by the corrosion of base metals, so preventing corrosion will be much more cost-effective. Coatings made with nanotechnology can protect Concrete against external degradation factors to prevent water and humidity from penetrating the Concrete and prevent rusting and corrosion of the rebar inside. It prevents water penetration and contamination into the Concrete and increases the Concrete's quality and structural efficiency. In this research, silica and titanium dioxide nanoparticle coatings have been used due to their suitable electrical and thermal properties, resistance to oxidation, corrosion, and wear to prevent the corrosion of rebars in Concrete. The results of this method show that these nanoparticles significantly improve the corrosion resistance of rebars.

납(Pb)도금(동개와)의 부식 연구 (Abrief study on the corrosion of bronze roofing tile)

  • 김사덕
    • 보존과학연구
    • /
    • 통권15호
    • /
    • pp.52-58
    • /
    • 1994
  • To protect corrosion of bronze roofing tile for Choson Royal Historic Museum, lead coating on tile was performed by electroplating method with thickness of $35\mum$. Lead coated tile samples were inverstigated what corrosion products were formed with color changes on them by testing Accelerated Weathering. No sulfides were formed on samples contacting with 300ppm sulfur dioxide and any color changes were not found. In Accelerated Weathering test, White hydrocerussite, basic lead carbonate($2PbCO_3Pb(OH)_2$) having protective structure made of compact adhering crystals.

  • PDF

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.