DOI QR코드

DOI QR Code

불특정 공식손상을 가진 316L 스테인리스강의 기계적 물성치 예측을 위한 다중선형회귀 적용

Application of Multiple Linear Regression to Predict Mechanical Properties of 316L Stainless Steel with Unspecified Pit Corrosion

  • 정광후 (목포해양대학교 승선실습과정부) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Kwang-Hu Jung (Division of cadet training, Mokpo national maritime university) ;
  • Seong-Jong Kim (Division of marine engineering, Mokpo national maritime university)
  • 투고 : 2023.02.04
  • 심사 : 2023.02.12
  • 발행 : 2023.03.02

초록

The aim of this study was to propose a multiple linear regression (MLR) equation to predict ultimate tensile strength (UTS) of 316L stainless steel with unspecified pit corrosion. Tensile specimens with pit corrosion were prepared using a potentiostatic acceleration test method. Pit corrosion was characterized by measuring ten factors using a confocal laser microscope. Data were collected from 22 tensile tests. At 85% confidence level, total pit volume, maximum pit depth, mean ratio of surface area, and mean area were significant factors showing linear relationships with UTS. The MLR equation using these three significant factors at a 85% confidence level showed considerable prediction performance for UTS. Determination coefficient (R2) was 0.903 with training and test data sets. The yield strength ratio of 316L stainless steel was found to be around 0.85. All specimens with a pit corrosion presented a yield ratio of approximately 0.85 with R2 of 0.998. Therefore, pit corrosion did not affect the yield ratio.

키워드

과제정보

본 논문은 2021년도 목포해양대학교 교내연구비의 지원을 받아 수행한 연구결과임.

참고문헌

  1. Y. Park, J. Yu, S. G. Sim, C. Jeong, Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel, Corrosion Science and Technology, 20, 152 (2021). Doi: https://doi.org/10.14773/cst.2021.20.3.152
  2. M. H. Boo, J. W. Lee, J. H. Lee, Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere, Corrosion Science and Technology, 19, 224 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.224
  3. M. E. A. B. Seghier, B. Keshtegar, K. F. Tee, T. Zayed, R. Abbassi, N. T. Trung, Prediction of maximum pitting corrosion depth in oil and gas pipelines, Engineering Failure Analysis, 112, 104505 (2020). Doi: https://doi.org/ 10.1016/j.engfailanal.2020.104505
  4. J. Dai, H. B. Li, H. Feng, Z. H. Jiang, J. D. Qu, Y. Zhao, T. Zhang, Revealing significant effect of nitrogen on prolonging pitting corrosion lifetime of martensitic stainless steel by modelling approach, Corrosion Science, 203, 110369 (2022). Doi: https://doi.org/10.1016/j.corsci.2022.110369
  5. S. Y. Cho, H. G. Na, H. R. Cho, J. J. Moon, T. J. Ahn, H. Jang, Corrosion and Photo-Reflection Behavior of Aluminum and Stainless Steel During Immersion Test in Salt Solution, Corrosion Science and Technology, 19, 109 (2020).
  6. F. Ahmadi, A. R. Ranji, H. Nowruzi, Ultimate strength prediction of corroded plates with center-longitudinal crack using FEM and ANN, Ocean Engineering, 206, 107281 (2020). Doi: https://doi.org/10.1016/j.oceaneng.2020.107281
  7. L. Feng, J. He, L. Hu, H. Shi, C. Yu, S. Wang, S. Yang, A parametric study on effects of pitting corrosion on steel plate's ultimate strength, Applied Ocean Research, 95, 102026 (2020). Doi: https://doi.org/10.1016/j.apor.2019.102026
  8. Y. Zhang, Y. Huang, Q. Zhang, G. Liu, Ultimate strength of hull structural plate with pitting corrosion damnification under combined loading, Ocean Engineering, 116, 273 (2016). Doi: https://doi.org/10.1016/j.oceaneng.2016.02.039
  9. Z. Zhao, H. Zhang, L. Xian, H. Liu, Tensile strength of Q345 steel with random pitting corrosion based on numerical analysis, Thin-walled structures, 148, 106579 (2020). Doi: https://doi.org/10.1016/j.tws.2019.106579
  10. D. Ok, Y. Pu, A. Incecik, Artificial neural networks and their application to assessment of ultimate strength of plates with pitting corrosion, Ocean Engineering, 34, 2222 (2007). Doi: https://doi.org/10.1016/j.oceaneng.2007.06.007
  11. T. Nakai, H. Matsushita, N. Yamamoto, Effect of pitting corrosion on strength of web plates subjected to patch loading, Thin-walled structures, 44, 10 (2006). Doi: https://doi.org/10.1016/j.tws.2005.09.004
  12. T. Nakai, H. Matsushita, N. Yamamoto, H. Arai, Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report), Marine structures, 17, 403 (2004). Doi: https://doi.org/10.1016/j.marstruc.2004.10.001
  13. K. M. Deen, M. A. Virk, C. I. Haque, R. Ahmad, I. H. Khan, Failure investigation of heat exchanger plates due to pitting corrosion, Engineering Failure Analysis, 17, 886 (2010). Doi: https://doi.org/10.1016/j.engfailanal.2009.10.023
  14. R. E. Melchers, Extreme value statistics and long-term marine pitting corrosion of steel, Probabilistic Engineering Mechanics, 23, 482 (2008). Doi: https://doi.org/ 10.1016/j.probengmech.2007.09.003
  15. A. Rahbar-Ranji, Stress analysis of a randomly undulated plate due to corrosion in marine structures, Yokohama National University (2001).
  16. J. Sheng, J. Xia, Effect of simulated pitting corrosion on the tensile properties of steel, Construction and Building Materials, 131, 90 (2017). Doi: https://doi.org/10.1016/j.conbuildmat.2016.11.037
  17. H. X. Yu, X. L. Xu, Z. W. Yu, Pitting-corrosion on internal wall of tee-pipe joined with main-pipe for seawater tank-washing system of a tanker, Engineering Failure Analysis, 104, 439 (2019). Doi: https://doi.org/10.1016/j.engfailanal.2019.06.013
  18. N. Larche, P. Dezerville, D. L. Flour, Corrosion and corrosion management investigations in seawater reverse osmosis desalination plants, Desalination and Water Treatment, 51, 1744 (2013). Doi: https://doi.org/10.1080/19443994.2012.714666
  19. M. Mokhtari, R. E. Melchers, Reliability of the conventional approach for stress/fatigue analysis of pitting corroded pipelines-development of a safer approach, Structural Safety, 85, 101943 (2020). Doi: https://doi.org/ 10.1016/j.strusafe.2020.101943
  20. R. Songbo, G. Ying, K. Chao, G. Song, X. Shanhua, Y. Liqiong, Effects of the corrosion pitting parameters on the mechanical properties of corroded steel, Construction and Building Materials, 272, 121941 (2021). Doi: https://doi.org/10.1016/j.conbuildmat.2020.121941