• 제목/요약/키워드: Corrosion Properties

검색결과 1,757건 처리시간 0.028초

에폭시 도막 철근의 내부식 성능에 관한 실험적 연구 (Perforrmance Tests of Epoxy-coated Reinforcing Bars : Corrosion Protection Properties)

  • 신영수;홍기섭;최완철
    • 콘크리트학회지
    • /
    • 제6권6호
    • /
    • pp.173-179
    • /
    • 1994
  • 콘크리트내 철근의 부식을 방지하여 내구성을 증대시키기 위해 국내에서 시험 생산한 에폭시도막 철근의 내부식성능을 실험, 평가하였다. 본 연구에서는 국내 산업규격(KS)과 미국재료시험기준 시험결과로부터 에폭시도막 철근을 내약품성능, 염화물 투과성은 양호하였다. 그러나, 에폭시도막 철근표면의 결함부에서 부식이 발생되었으며 도막두계 $200{\mu}m$ 미만의 시험체에서 부식발생률이 높았다. 4mm 정도의 부분에폭시 도막손상은 전체적인 부식에 영향을 미치지는 않았다. 도막의 결함이 생기지 않도록 에폭시도막 과정에서 철근의 표면처리에 주의가 특별히 필요하다.

Evaluation of Corrosion Resistance Properties by Applying Galvanostatic Nanoscale Current Density on Passive Metals

  • Na, Seung-Chan;Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.7-11
    • /
    • 2007
  • In this study, new evaluation method for the stability and corrosion resistance properties of passive films has been suggested by means of observation of self-activation process in open-circuit state and galvanostatic nanoscale reduction test. The experiments were performed for air-formed oxide film in case of plain carbon steel, and for anodically passivated films formed in aqueous sulfuric acid solutions in case of titanium and 304 stainless steel. From these experimental results, we derived two parameters, $i_{0}$ and $q_{0}$, which characterize the self-activation process and the properties of passive film on a stainless steel surface. The parameter $i_{0}$ was defined as the rate of self-activation, and $q_{0}$, the reduced amount of charge during the self-activation process. In conclusion, it is considered that the stability and corrosion resistance of passive metals and alloys can be evaluated quantitatively by three parameters of $\tau_{0}$, $q_{0}$, and $i_{0}$, which easily obtain by means of observing the self-activation process and galvanostatic nanoscale reduction test.

전기화학시험에 의한 부식용액별 구조물의 부식 특성 연구 (A study on the corrosive behaviour of Rolling stock structures by electrochemical experiments)

  • 오창록;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.686-691
    • /
    • 2004
  • The present paper describes an experimental study on the corrosive behaviour of Rolling stock structures. It is important to predict corrosive behaviour of rolling stock structures for safe service and to know relation between corrosion and fatigue life. This paper practiced electrochemical corrosion test of SS400 and SM490A. This study will examine the corrosive properties and differences of SS400 and SM490A from measuring corrosion potential, corrosion current density and corrosion rate.

  • PDF

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

  • Visser, A.;Mori, G.;Panzenbock, M.;Pippan, R.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.172-176
    • /
    • 2015
  • Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.

표면피복종류에 따른 복합열화환경하의 철근콘크리트 부식특성에 관한 실험적 연구 (An experimental study on corrosion properties of reinforcing steel under environment of complex deterioration)

  • 조봉석;김영덕;윤종기;김재환;김용로;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.86-89
    • /
    • 2003
  • It is recognized that reinforcement corrosion is the main distress behind the present concern regarding concrete durability. In this study, to confirm corrosion of reinforced concrete affected by thickness of cover, kinds of surface coating, measured electric potential, ratio of corrosion area, weight reduction, corrosion velocity of steel bar under environment of complex deterioration. The results showed that an increase in age also increases corrosion of steel bar. Ratio of corrosion area is largely related to ratio of weight reduction. as well, corrosion of steel bar by thickness of cover is superior to l0mm thick than 20mm thick. It showed that an increase in thickness of cover prevent steel bar from deteriorating. The results of this study showed that corrosion velocity was affected by thickness of cover, kinds of surface coating. data on the development of corrosion velocity made with none, organic B, organic A, inorganic B, and inorganic A is shown.

  • PDF

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

대기부식에 의한 가선재의 열화특성 (Degradation Properties of Catenary Wires on the Atmospheric Corrosion)

  • 김용기;장세기;정우성;이덕희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.590-596
    • /
    • 2002
  • Contact wires are made by metallic materials and exposured at atmosphere. We have investigated mechanical properties and the present condition of air pollution as to the messenger wires and ACSR wires of these contact wires. Mechanical properties between new contact wires and used, the used one's tensile strength and elongations was decreased by effect from corrosion. We observed a fatigue properties which was investigated by fatigue test because contact wires were affected with amplitude vibration everytime the train passed through the railways. In the evaluation of fatigue test, it was also shown that fatigue life of the used wires was decreased 50 ∼ 60% compared with that of new ones in average by effect from corrosion.

  • PDF

Fe-17wt%Mn 합금의 진동감쇠능, 내후성 및 기계적 성질에 미치는 Cu 첨가의 영향 (Effects of Copper Addition on Damping Capacities, Atmospheric Corrosion and Mechanical Properties of Fe-17wt % Mn Alloy)

  • 백승한;김정철;지광구;최종술
    • 열처리공학회지
    • /
    • 제8권2호
    • /
    • pp.113-119
    • /
    • 1995
  • We have reported that an Fe-17wt%Mn alloy exhibits the highest damping capacity in the Fe-Mn binary system. In the present work, the effects of copper content on the damping capacity, atmospheric corrosion and mechanical properties were studied. The damping capacities were measured at room temperature for the air cooled Fe-17wt%Mn alloy having copper content from 0.1wt% to 1.1wt%. The damping capacity of the Fe-17wt %Mn alloy was decreased with increasing copper content. However, the addition of Copper was found to improve mechanical properties and atmospheric corrosion resistance. These mechanical properties were attributed to the formation of stress-induced martensite during tensile test.

  • PDF

니오븀이 첨가된 Zr 합금 스트립의 부식 및 기계적 특성에 대한 최종열처리 영향 (Effects of Final Heat Treatment on Corrosion and Mechanical Properties of Zr Alloy Strip Incorporating Nb)

  • 이명호;정양일;최병권;박상윤;김현길;박정용;정용환
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.474-481
    • /
    • 2009
  • The effects of final heat treatment on the mechanical and corrosion properties of a Zr alloy strip incorporating Nb were investigated. The chemical composition of the strip was Zr-1.49Nb-0.38Sn-0.20Fe-0.11Cr, and strip specimens were subjected to final heat treatment in a temperature range of $580{\sim}700^{\circ}C$. Tensile tests at room temperature and $316^{\circ}C$, along with corrosion tests in a simulated PWR loop and a 70 ppm LiOH solution environment at $360^{\circ}C$, were performed on the specimens. The mechanical properties of the strip were saturated when the specimens received final heat treatment at an elevated temperature of more than $640^{\circ}C$. However, the corrosion resistance of the strip in the simulated PWR loop and in the 70 ppm LiOH solution environment was improved with a decrease of the final annealing temperature. It is recommended that the alloy strip be finally heat-treated at a temperature of less than $620^{\circ}C$ for longer than 10 minutes in order to obtain fully recrystallized microstructures, and thereby attain enlarged tensile elongation, and to prevent the precipitation of ${\beta}-Zr$, which is known to deteriorate the corrosion resistance.

해수배관 내부 에폭시 코팅재의 캐비테이션 및 침지 열화에 따른 압입인장특성 (Indentation Tensile Properties of Seawater Piping with Cavitation and Immersion Degradation)

  • 정민재;김수현;전종모;김영식;김영천
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.419-428
    • /
    • 2023
  • Seawater has been used to cool devices in nuclear power plants. However, the pipes used to transport seawater are vulnerable to corrosion; hence, the inner side of pipelines is coated with an epoxy layer as prevention. Upon coating damage, the pipe becomes exposed, and corrosion progresses. The major cause is widely known as cavitation corrosion, causing the degradation of mechanical properties. In this study, corroded specimens were prepared using cavitation and immersion methods to clarify the degradation trend of mechanical properties with corrosion. Three different types of epoxy coatings were used, and accelerated cavitation procedures were composed of amplitudes of 15 ㎛, 50 ㎛, and 85 ㎛ for 2 h, 4 h, and 6 h. The immersion periods were 3 and 6 weeks. We conducted instrumented indentation tests on all degradation samples to measure mechanical properties. The results showed that higher cavitation amplitudes and longer cavitation or immersion times led to more degradation in the samples, which, in turn, decreased the yield strength. Of the three samples, the C coating had the highest resistance to cavitation and immersion degradation.