Effects of Final Heat Treatment on Corrosion and Mechanical Properties of Zr Alloy Strip Incorporating Nb

니오븀이 첨가된 Zr 합금 스트립의 부식 및 기계적 특성에 대한 최종열처리 영향

  • 이명호 (한국원자력연구원 원자력융합기술개발부) ;
  • 정양일 (한국원자력연구원 원자력융합기술개발부) ;
  • 최병권 (한국원자력연구원 원자력융합기술개발부) ;
  • 박상윤 (한국원자력연구원 원자력융합기술개발부) ;
  • 김현길 (한국원자력연구원 원자력융합기술개발부) ;
  • 박정용 (한국원자력연구원 원자력융합기술개발부) ;
  • 정용환 (한국원자력연구원 원자력융합기술개발부)
  • Received : 2008.11.28
  • Published : 2009.08.25

Abstract

The effects of final heat treatment on the mechanical and corrosion properties of a Zr alloy strip incorporating Nb were investigated. The chemical composition of the strip was Zr-1.49Nb-0.38Sn-0.20Fe-0.11Cr, and strip specimens were subjected to final heat treatment in a temperature range of $580{\sim}700^{\circ}C$. Tensile tests at room temperature and $316^{\circ}C$, along with corrosion tests in a simulated PWR loop and a 70 ppm LiOH solution environment at $360^{\circ}C$, were performed on the specimens. The mechanical properties of the strip were saturated when the specimens received final heat treatment at an elevated temperature of more than $640^{\circ}C$. However, the corrosion resistance of the strip in the simulated PWR loop and in the 70 ppm LiOH solution environment was improved with a decrease of the final annealing temperature. It is recommended that the alloy strip be finally heat-treated at a temperature of less than $620^{\circ}C$ for longer than 10 minutes in order to obtain fully recrystallized microstructures, and thereby attain enlarged tensile elongation, and to prevent the precipitation of ${\beta}-Zr$, which is known to deteriorate the corrosion resistance.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Y. H. Jeong, S. Y. Park, M. H. Lee, B. K. Choi, J. H. Baek, J. Y. Park, J. H. Kim, and H. G. Kim, J. Nucl. Sci. Tech. 43, 977 (2006) https://doi.org/10.3327/jnst.43.977
  2. K. W. Song, Y. H. Jeong, K. S. Kim, J. G. Bang, T. H. Chun, H. K. Kim, and K. N. Song, Nucl. Eng. Tech. 40, 21(2008) https://doi.org/10.5516/NET.2008.40.1.021
  3. S. J. King, R. L. Kesterson, K. H. Yueh, R. J. Comstock, W. M. Herwig, and S. D. Ferguson, ASTM STP 1423, 471(2002)
  4. Y. H. Jeong, H. G. Kim, and T. H. Kim, J. Nucl. Mater. 317, 1 (2003) https://doi.org/10.1016/S0022-3115(02)01676-8
  5. M. H. Lee, Y. I. Jung, J. Y. Park, and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 47, 482 (2009)
  6. J. J. Kearns, Westinghouse Electric Corp., WAPD-TM-472(1965)
  7. W. Tyson, Acta Metall. 15, 574 (1967) https://doi.org/10.1016/0001-6160(67)90096-X
  8. A. Akhtar, J. Nucl. Mater. 47, 79 (1973) https://doi.org/10.1016/0022-3115(73)90189-X
  9. O. Castelnau, H. Francillette, B. Bacroix, and R. A. Lebensohn, J. Nucl. Mater. 297, 14 (2001) https://doi.org/10.1016/S0022-3115(01)00589-X
  10. A. Jain and S. R. Agnew, Mater. Sci. Eng. A 462, 29(2007) https://doi.org/10.1016/j.msea.2006.03.160
  11. Y.-I. Jung, M.-H. Lee, J.-Y. Park, and Y.-H. Jeong, Metal. Mater. Int. (2009) in press
  12. A. Akhtar, Acta Metall. 21, 1 (1973) https://doi.org/10.1016/0001-6160(73)90213-7
  13. M. H. Lee, J. H. Kim, B. K. Choi, and Y. H. Jeong, J. Alloy. Compd. 428, 99 (2007) https://doi.org/10.1016/j.jallcom.2006.03.076
  14. H. Stehle, W. Kaden, and R. Manzel, Nucl. Eng. Des. 33, 155 (1975) https://doi.org/10.1016/0029-5493(75)90020-5
  15. E. Hillner, ASTM STP 633, 211 (1977)
  16. H. G. Kim, S. Y. Park, M. H. Lee, Y. H. Jeong, and S. D. Kim, J. Nucl. Mater. 373, 429 (2008) https://doi.org/10.1016/j.jnucmat.2007.05.035
  17. F. Garzarolli, H. Stehle, and E. Steinberg, ASTM STP 1295, 12 (1996)