• 제목/요약/키워드: Corrosion Measurement

검색결과 429건 처리시간 0.03초

Design of Advanced Weathering Steel with High Corrosion Resistance for Structural Applications

  • Choi, B.K.;Jung, H.G.;Yoo, J.Y.;Kim, K.Y.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.121-129
    • /
    • 2005
  • Basic design concept of the future steel structure requires environmental compatibility and maintenance free capability to minimize economic burdens. Recent trends in alloy design for advanced weathering steel include addition of various alloying elements which can enhance formation of stable and protective rust layer even in polluted urban and/or high $Cl^{-}$ environment. The effects of Ca, Ni, W, and Mo addition on the corrosion property of Ca-modified weathering steel were evaluated through a series of electrochemical tests (pH measurement and electrochemical impedance spectroscopy: EIS) and structural analysis on rust layer formed on the steel surface. Ca-containing inclusions of Ca-Al-Mn-O-S compound are formed if the amount of Ca addition is over 25 ppm. Steels with higher Ca content results in higher pH value for condensed water film formed on the steel surface, however, addition of Ni, W, and Mo does not affect pH value of the thin water film. The steels containing a high amount of Ca, Ni, W and Mo showed a dense and compact rust layer with enhanced amount of ${\alpha}-FeOOH$. Addition of Ni, W and Mo in Ca-modified weathering steel shows anion-selectivity and contributes to lower the permeability of $Cl^{-}$ ions. Effect of each alloying element on the formation of protective rust layer will be discussed in detail with respect to corrosion resistance.

고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정 (Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate)

  • 오인환;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권3호
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

항만센서용 수정진동자의 해수에 의한 부식 (Corrosion of Quartz Crystal Sensors in Sea Water)

  • 최광재;김영한;장상목
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.183-188
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the cmsion process of an aluminum surface of a quartz crystal by sea water. A quartz crystal having 2000${\AA}$ of aluminum layer is installed in a spedally designed cell and is in contact with an electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrornetedEDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of metal surface.

  • PDF

Advanced Metallic Coating for the Improvement of Corrosion and Erosion Resistance of Iron Base Materials Used in Buildings and Special Works

  • Jayaraj, J.;Seok, H.K.;Byun, K.H.;Fleury, E.;Hong, K.T.
    • Corrosion Science and Technology
    • /
    • 제4권2호
    • /
    • pp.64-68
    • /
    • 2005
  • Various metallic materials are coated on Fe base materials via thermal spraying or welding process to improve both corrosion resistance as well as erosion resistance of the Fe base materials used in buildings and special works. The mechanical properties and corrosion resistance of the coat are estimated by means of hardness measurement and anodic polarization test. In additions, the effect of alloying elements and microstructure of the coatings on the mechanical and chemical properties of the coat is investigated using X- ray diffraction, Optical microscope, Transmission electron microscopy and Auger analysis. The coating deposited by tungsten inert gas (TIG) welding exhibit a good combination of hardness and corrosion properties.

산성안개하에서 기계·구조용강의 응력부식균열 거동 (Behavior of Stress Corrosion Cracking in Structural Steel under Acid Fog Environment)

  • 임용호;김민건
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.291-295
    • /
    • 1997
  • The tests of stress corrosion cracking in structural carbon steel were carried out under the conditions of acid fog and general water. As the result of measurement SCC rupture time under acid fog was observed to be much shorter than that of general water at the same stress level. Therefore, acid fog drops the SCC strength in structural carbon steel due to strong corrosion. In the SCC process by acid fog, crack initiation was caused by pit corrosion and local stress concentration, and distinctive feature of crack growth shows branching since crack grows to the corrosion direction. Moreover, corrosion products were observed by clevage corrosion on the crack surfaces.

  • PDF

해수중 7년간 침지된 몰탈시험편의 철근부식에 미치는 부식억제제의 효과 (The Effect of Corrosion Inhibitors Influencing on the Corrosion of Reinforced Steel in Mortar Specimen Immersed in Sea Water for Seven Years)

  • 정진아;남진각;문경만;이명훈;김기준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.211-216
    • /
    • 1998
  • Recently the shortage of good aggregate has encouraged the use of sea sand in construction field, and the corrosion damage of the reinforced steel in concrete structures has been increased due to chlorides from sea sand and deicing salt. Therefore, a number of researchs are proceeding to prevent the corrosion of the reinforced steel in concrete, especially in marine environments. This study focused on the effect of corrosion inhibitors to evaluate protection characteristics for mortar specimens containing clorides. Corrosion behaviors have been investigated by half-cell potential measurement, linear polarization method, AC impedance method, and cyclic polarization test after immersing in sea water for 7 years. A possitive effect of a corrosion inhibitor has been obtained.

  • PDF

철근부식에 의한 육지 콘크리트의 잔존수명 예측 (The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion)

  • 정우용;윤영수;송하원;변근주
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

A Novel Under-film Corrosion Tester Using Current Interrupter Technique

  • Tanabe, Hiroyuki;Taki, Tohru;Nagai, Masanori;Ogawa, Osamu
    • Corrosion Science and Technology
    • /
    • 제3권6호
    • /
    • pp.240-244
    • /
    • 2004
  • Recently a variety of electrochemical techniques have been used for the measurement of under-film corrosion of coated steel. Each method has its own characteristic and is suitable to determine some kinds of anti-corrosive mechanisms of coating film. We developed a new under-film corrosion tester (UFCT) which adoped current interrupter technique in principle. Electrochemical parameters can be measured by UFCT. It is possible for the novel under-film corrosion tester to evaluate under-film corrosion of steel covered with high electric resistance coating film which has no defect and is not easy to evaluate it by other methods. Finally some experimental results of protective coating performance obtained by UFCT were discussed.

콘크리트내부의 철근부식에 관한 전기화학적연구 (The Electrochemical Study of the Concrete Reinforcement Corrosion)

  • 강태혁;조원일;신치범;김은겸;주재백;윤경석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.213-217
    • /
    • 1996
  • The electrochemical methods of early detection and analysis of corrosion related deterioration in concrete reinforcement structures are very useful techniques. The generally using procedure for corrosion monitoring of reinforced structures employs a method of half-cell potential measurement. Whilst the technique has provided a useful means of delineating areas of high or low corrosion risk, there are difficulties in its use and interpretation, particularly when assessing corrosion rates of reinforcement. The aim of this study is to describe the AC-impedance method being employed to monitor and assess corrosion rates, to estimate corrosion mechanism of reinfrocement in laboratory conditions. The AC-impedance monitoring technique applies a small amplitude(20mV) AC signal to embedded steel in concrete and reference electrode (Cu/$CuSo_4$). We obtained over a wide frequency range(10MHz~1mHz) to produce a complex plane plot or Nyquist plot.

  • PDF

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.