• Title/Summary/Keyword: Corrosion Level

Search Result 346, Processing Time 0.027 seconds

The Evaluation of Toxic Influence of Phosphate Corrosion Inhibitors in Drinking Water

  • Kim, Jin-A;Lee, Jun-Yeon;Eo, Soo-Mi;Shin, Jung-Sik;Kim, Myung-Hee
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.330-332
    • /
    • 2005
  • Ten phosphate corrosion inhibitors meet the required standards and drinking waters containing corrosion inhibitors also within 27 items of water quality standards. In addition, the T-P concentration was observed at a level of 2.342-2.909mg/L. Those results indicate that the corrosion inhibitors are not harmful and, as for drinking waters with inhibitors, they can be considered not to have any toxic influence on human body when used below the regulated level of 10mg/L.

  • PDF

Inhibition of Pitting Corrosion of Copper Tubes in Wet Sprinkler Systems by Sodium Sulfite (아황산나트륨을 이용한 스프링클러 동배관 공식 부식 방지)

  • Suh, Sang Hee;Suh, Youngjoon;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.265-272
    • /
    • 2017
  • Inhibition of pitting corrosion of the copper sprinkler tubes by removing dissolved oxygen in water with sodium sulfite was studied on the wet sprinkler systems operated in 258 household sites. First, air in the sprinkler tubing was removed by vacuum pumping. The tube was then filled with sodium sulfite dissolved in water. Sodium sulfite was very effective in maintaining a very low dissolved oxygen concentration in water in the sprinkler tube for the observation period of six months. Water leakage from the copper sprinkler tube was reduced significantly by using sodium sulfite. Both pitting corrosion process and pitting corrosion inhibition mechanism were investigated by examining microscopical and structural aspects of corrosion pits formed in failed copper sprinkler tube. Pitting corrosion was caused by pressurized air as well as sediments such as sand particles in copper tubes through oxygen concentration cells. It was confirmed microscopically that growth of corrosion pits was stopped by reducing dissolved oxygen concentration to a very level by using sodium sulfite.

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF

Behavior of Stress Corrosion Cracking in Structural Steel under Acid Fog Environment (산성안개하에서 기계·구조용강의 응력부식균열 거동)

  • Lim, Yong Ho;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.291-295
    • /
    • 1997
  • The tests of stress corrosion cracking in structural carbon steel were carried out under the conditions of acid fog and general water. As the result of measurement SCC rupture time under acid fog was observed to be much shorter than that of general water at the same stress level. Therefore, acid fog drops the SCC strength in structural carbon steel due to strong corrosion. In the SCC process by acid fog, crack initiation was caused by pit corrosion and local stress concentration, and distinctive feature of crack growth shows branching since crack grows to the corrosion direction. Moreover, corrosion products were observed by clevage corrosion on the crack surfaces.

  • PDF

Flexural bond strength behaviour in OPC concrete of NBS beam for various corrosion levels

  • Shetty, Akshatha;Venkataramanaa, Katta;Babu Narayan, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.81-93
    • /
    • 2014
  • Corrosion is one of the primary reasons why structures have limited durability. The present investigation is carried out to study the behavior of RC (Reinforced Concrete) structural members subjected to corrosion. Experimental investigations were carried out on National Bureau of Standard (NBS), RC beam specimens made of Ordinary Portland Cement (OPC) concrete. Load versus deflection behaviour was studied for different levels of corrosion i.e., 2.5%, 5%, 7.5% and 10%. It is observed that for every percentage increase in corrosion level, there is about 1.6% decrease in load carrying capacity. Also as the amount of corrosion increases there is a reduction in bond stress.

Study on The Measurement of Corrosion Product Concentration in The Feed Water System of A Power Plant (발전소 급수계통 부식생성물 농도 측정에 관한 연구)

  • Moon, Jeon Soo;Lee, Jae Kun
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.151-155
    • /
    • 2011
  • The iron oxide particles could be resulted from the corrosion of the circulating water system of a power plant. Because it may be one of the trouble materials which affect the power generation efficiency due to the deposition on steam generator tube and turbine blade, the continuous observation of its concentration is very important. The laser induced break-down detection (LIBD) technology was applied to monitor continuously the concentration of corrosion products with the detection limit of ppb level. The measurement system consists of a Nd:YAG pulsed laser, a polarizing beam splitter, a flow-type sample cell, an acoustic emission sensor, a high speed data acquisition board, a personal computer, etc.. The performance test results confirmed that this technology can be effective to monitor the corrosion product concentration of the circulating water system of a power plant.

On the Implementation of Fuzzy Arithmetic for Prediction Model Equation of Corrosion Initiation

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1045-1051
    • /
    • 2005
  • For critical structures and application, where a given reliability must be met, it is necessary to account for uncertainties and variability in material properties, structural parameters affecting the corrosion process, in addition to the statistical and decision uncertainties. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters and the fuzziness of the corrosion time is determined by the fuzzy arithmetic of interval arithmetic and extension principle

Stress distribution on the real corrosion surface of the orthotropic steel bridge deck

  • Kainuma, Shigenobu;Jeong, Young-Soo;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1479-1492
    • /
    • 2015
  • This study evaluated the localized stress condition of the real corroded deck surface of an orthotropic steel bridge because severe corrosion damage on the deck surface and fatigue cracking were reported. Thus, a three-dimensional finite element (FE) analysis model was created based on measurements of the corroded orthotropic steel deck surface to examine the stress level dependence on the corrosion condition. Based on the FE analysis results, it could be confirmed that a high stress concentration and irregular stress distribution can develop on the deck surface. The stress level was also increased by approximately 1.3-1.5 times as a result of the irregular corroded surface. It was concluded that this stress concentration could increase the possibility of fatigue cracking in the deck surface because of the surface roughness of the orthotropic steel bridge deck.

Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete (GGBFS 콘크리트에 매립된 Notch를 가진 FRP Hybrid Bar의 부식저항성 평가)

  • Oh, Kyeong-Seok;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.51-58
    • /
    • 2016
  • Concrete structure is a construction material with durability and cost-benefit, however the corrosion in embedded steel causes a critical problem in structural safety. This paper presents an evaluation of chloride resistance and pull-off performance with various corrosion level. For the work, OPC(Ordinary Portland Cement) concrete and GGBFS(Ground Granulated Blast Furnace Slag) concrete are prepared with normal steel. Artificially notch induced FRP Hybrid Bar is also prepared and embedded in OPC concrete and accelerated corrosion test is performed. Through the test, FRP Hybrid Bar with notch is evaluated to have insignificant effect on pull-off capacity when corroded steel shows only 21% level of pull-off capacity. Furthermore GGBFS concrete with normal steel shows over 70% level of pull-off capacity due to reduced corrosion currency.

Atmospheric Corrosion of 7B04 Aluminum Alloy in Marine Environments

  • Zhang, Xiaoyun;Liu, Ming;Lu, Feng;Liu, Minghui;Sun, Zhihua;Tang, Zhihui
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • Outdoor exposure tests using of 7B04 aluminium alloy samples including plate, tensile and various SCC samples were carried out in Tuandao station, Shandong province (East of China) and Wanning station, Hainan province (South of China). Corrosion characteristics including weight loss, microstructure, tensile strength and SCC susceptibility were investigated. The corrosion rates in Tuandao and Wanning showed high to low and the corrosion rates changed to the following equation of $w=at^b$ (b<1). The corrosion of 7B04 aluminium alloy in Wanning was more serious than that in Tuandao. Pitting appeared at early stage of expose test, and it can be changed to general corrosion with test time extension. The 7B04 aluminium alloy of which specimen shapes are forging and thick plate also showed SCC (Stress corrosion cracking) in the marine atmosphere. The higher SCC sensitivity was observed in Wanning station than in Tuandao station. The 7B04 aluminium alloy with a high stress level was more sensitive to SCC. Intergranular and transgranular or a mixed mode of cracking can be observed in different marine exposure.