Abstract
Inhibition of pitting corrosion of the copper sprinkler tubes by removing dissolved oxygen in water with sodium sulfite was studied on the wet sprinkler systems operated in 258 household sites. First, air in the sprinkler tubing was removed by vacuum pumping. The tube was then filled with sodium sulfite dissolved in water. Sodium sulfite was very effective in maintaining a very low dissolved oxygen concentration in water in the sprinkler tube for the observation period of six months. Water leakage from the copper sprinkler tube was reduced significantly by using sodium sulfite. Both pitting corrosion process and pitting corrosion inhibition mechanism were investigated by examining microscopical and structural aspects of corrosion pits formed in failed copper sprinkler tube. Pitting corrosion was caused by pressurized air as well as sediments such as sand particles in copper tubes through oxygen concentration cells. It was confirmed microscopically that growth of corrosion pits was stopped by reducing dissolved oxygen concentration to a very level by using sodium sulfite.