• 제목/요약/키워드: Corrosion Fatigue

검색결과 419건 처리시간 0.029초

치과용 Ni-Ti파일의 표면특성에 미치는 ta-C코팅효과 (Effects of ta-C Coatings on Surface Characteristics of Dental Ni-Ti Files)

  • 박순균;최한철
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.368-376
    • /
    • 2023
  • Dental Ni-Ti files must ensure stability and resistance to fatigue fracture. DLC and ta-C were coated to remove defects on the surface and ensure stability, and the surface characteristics were investigated. When coated with DLC, it was black, and in case of ta-C coating, it was blue-black. Scratches, which are defects caused by mechanical processing, were formed on the surface of the un-coated Ni-Ti file from the end of the file along the direction of processing, with the Pro-file appearing in the vertical direction and the K-file appearing in the file direction. Scratches were reduced on the coated surface, and the surface roughness was greatly reduced after coating compared to before coating. The un-coated Ni-Ti file had the lowest hardness, the DLC-coated file had the highest hardness, and ta-C showed relatively high hardness. The elastic modulus of the DLC coating film was high, and the ta-C elastic modulus was low. The adhesion of the DLC coating film tended to be higher than that of ta-C, and the wear loss amount of DLC coating of taC was lower. The corrosion potential of the ta-C coating increased significantly, and the corrosion current density decreased.

ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구 (Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe)

  • 김재성;김용;이보영
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: stiffened panels

  • Kim, Do Kyun;Park, Dae Kyeom;Kim, Jeong Hwan;Kim, Sang Jin;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.507-530
    • /
    • 2012
  • Age-related problems especially corrosion and fatigue are normally suffered by weatherworn ships and aging offshore structures. The effect of corrosion is one of the important factors in the Common Structural Rule (CSR) guideline of the ship design based on a 20 or 25 years design life. The aim of this research is the clarification of the corrosion effect on ultimate strength of stiffened panels on various types of double hull oil tankers. In the case of ships, corrosion is a phenomenon caused by the ambient environment and it has different characteristics depending on the parts involved. Extensive research considering these characteristic have already done by previous researchers. Based on this data, the ultimate strength behavior of stiffened panels for four double hull oil tankers such as VLCC, Suezmax, Aframax, and Panamax classes are compared and analyzed. By considering hogging and sagging bending moments, the stiffened panels of the deck, inner bottom and outer bottom located far away from neutral axis of ship are assessed. The results of this paper will be useful in evaluating the ultimate strength of an oil tanker subjected to corrosion. These results will be an informative example to check the effect of ultimate strength of a stiffened panel according to corrosion addition from CSR for a given type of ship.

선박용(船舶用) 프로펠러의 부식(腐蝕)피트 보수후의 강도의 개선 (An Improvement of the Strength of Marine Propeller Materials after Corrosion Pit Repairing)

  • 윤한용
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.89-94
    • /
    • 2008
  • Marine propeller is one of the most important element of ship, it must be taken care of design and maintenance of it. It is inevitable that corrosion pits have occurred on the marine propeller. If corrosion pits have occurred on the blades, they have been repaired ordinary by simple welding methods in shipyards. It must be that the strength is degraded in this process. In this paper, we represent the improvement method of fatigue strength degraded after repairing pits.

인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가 (Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF

CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성 (Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel)

  • 정일석;하각현;김태룡;전현익;김영신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF

0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동 (Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior)

  • 안석환;강흥주;서현수;남기우;이건찬
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor

  • Min, Ki-Deuk;Hong, Seokmin;Kim, Dae-Whan;Lee, Bong-Sang;Kim, Seon-Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.752-759
    • /
    • 2017
  • The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.