• 제목/요약/키워드: Corrosion Fatigue

검색결과 418건 처리시간 0.031초

Structural Characteristics and Field Application of 'Delta Deck' Composite Bridge (복합소재 교량 바닥판 '델타데크'의 구조적 특성과 현장적용)

  • 이성우;박신전;김병석;정규상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2004
  • To substitute conventional reinforced-concrete bridge deck, glass composite precast bridge deck - Delta Deck/sup TM/, which possesses advantages of light weight, high strength, corrosion resistance and durability, is developed for the DB24 truck load. Pultruded composite bridge deck is designed and fabricated. To verify serviceability and structural safety, finite element analysis, structural testing such as flexural test, local fatigue test, flexural fatigue test and field tests are conducted. In this paper structural characteristics of developed deck and its field application in Korea is presented.

  • PDF

Study on the Repair Method of R/C Structures(III) (철근콘크리트 구조물의 보수공법 연구(III) -정.동적 휨특성 연구-)

  • 심종성;홍영균;황의승;배인환;이은호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.225-230
    • /
    • 1995
  • Concrete structures need repair and rehabilitation due to functional deficiencies such as cracks, scaling and spalling. Loss of section such as spalling is caused by corrosion of reinforcing bar, fire, temperature change, poor design and etc. This study aims to examine the characteristics of polymer(epoxy)and polymer-cement(latex) for repair materials and to provide the proper repair scheme through static and fatigue tests. Totally 12 beams were tested. Results from static and fatigue tests of beams repaired with polymer and polymer-cement were compared.

  • PDF

A Study on the Fatigue Crack Growth Characteristics of the Welded Part According to the Welding Method of Ship Structural Steel (선체구조용강의 용접방법에 따른 용접부의 피로균열전파특성 연구)

  • Park, Kyeong-Dong;Ki, Woo-Tae;Lee, Ju-Yeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.385-393
    • /
    • 2007
  • The strength evaluation of the most weakest junction part is required for the safety design of all structures. Most of all. in order to enhance the reliability and safety of the welding part. whose use is the highest, it is very important to establish the efficient structure manufacturing technology by studying and investigating the evaluation of fatigue strength in various environments. This study analyzed the relations of da/dN, and th according to the welding methods of SMAW, FCAW, and SAW. In the stage II. the value of stress intensity factor range was the highest in SMAW welding method of stress ration R=0.1, and appeared under the sequence of FCAW and SAW and as the completion section of stress intensity factor was low, threshold stress intensity factor was lowly formed in da/dN - The fatigue life of each welding method is sensitively worked in high stress ratio. judging from the fact that the width of life reduction increases in the high stress ratio zone compared to the width of life reduction in the low stress ratio zone. In the fatigue limit of welding methods before corrosion. the welding of SMAW and FCAW shows the same fatigue limit compared to Base metal, and SAW holds the lowest fatigue limit value.

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제28권4호
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Effect of Weld Improvement on the Corroded Fatigue Life of Welded Structures (용접구조물의 부식피로수명에 미치는 용접부 개선처리 효과)

  • Im, Sung-Woo;Chang, In-Hwa;Kim, Sang-Shik;Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.50-57
    • /
    • 2008
  • The effect of weld improvement on the corroded fatigue life of welded structures was investigated. Toe grinding, TIG dressing and weld profiling were used as the geometric improvement methods. Fatigue tests under the corroded condition in artificial seawater were carried out to investigate the corrosion fatigue behavior of API 2W Gr.50T steel plate produced by POSCO. The test results in weld improved conditions were compared with those in as-welded condition. The test results were also compared with the design curves in UK DEn Class F. Corroded fatigue life of weld improved specimens was longer than that of as-welded specimen. Especially, the corroded fatigue life exceeded the mean SN curve in air of UK DEn Class F.

A Study on Corrosion Fatigue Crack Propagation Behaviors due to a Single Overload in 6063-T5 Aluminum Alloy (6063-T5 알미늄 합금의 단일과대하중에 의한 부식피로균열진전거동에 관한 연구)

  • 강동명;우창기;이하성
    • Journal of the Korean Society of Safety
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows. 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF

A Study on Experimental the Fatigue Behavior of RC Two-Spans Beam using Steel Fiber (강섬유를 사용한 RC 2경간 연속보의 피로거동에 관한 실험적 연구)

  • Kwak, Kae-Hwan;Suk, In-Soo;Park, Jong-Gun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.363-366
    • /
    • 2003
  • Concrete structures are becoming larger, higher, longer and more specialized. Currently, one of the biggest problems of concrete structures is the occurrence of cracks. Cracks are a serious structural problem that decreases durability and causes external damage leading to corrosion. The specimen without steel fiber fractured between 60-70% of the static ultimate strength (the fatigue strength to one million cycles on the number of cycles from the S-N curve was 73.7% and the fatigue strength to two million cycles was approximately 67.2%). The specimen with steel fiber fractured at 65-80% of the static ultimate strength, concluding fatigue strength to one million cycles around 74.6% and to two million cycles around 75%.

  • PDF

Effects of Acid Fog and CaCl2 on the Corrosion Fatigue Strength of Structural Steel (구조용 강재의 부식피로 강도에 미치는 산성안개 및 염화칼슘의 영향)

  • Kim, Min-Gun;Kim, Myoung-Sub
    • Journal of Industrial Technology
    • /
    • 제21권A호
    • /
    • pp.17-26
    • /
    • 2001
  • The fatigue strength of SM55C has significantly decreased by 83% compared with atmosphere where distilled exists due to strong erosive action of acid fog. The reason is inferred in a way that strong acid erosive material such as acid fog act and give rise to multi-site crack on the surface. Several fatigue clacks occurred under the acid fog repeat the process of division and unification on the surface and form a long non-propagating crack throughout the circumference of experimented steel. However, in the depth, many parts do not show much trace of unification, and the depth is not as big as the one of normal crack shape. 10% of $CaCl_2$ causes strong erosive reaction to material. Then eventually make the life of fatigue shooter. On the other hand, 20% of $CaCl_2$ beings about oxidized material organic crack closing due to weak erosive reaction.

  • PDF

Environmental Fatigue Behaviors of Austenitic Stainless Steels in the Primary Water Environment of Nuclear Power Plants (원전일차측 환경에서 오스테나이트계 스테인리스강의 환경피로특성)

  • Lee, Hyeon Bae;Kim, Ho-Sub;Kim, Taesoon;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • 제13권2호
    • /
    • pp.19-30
    • /
    • 2017
  • Austenitic Stainless Steels (ASSs) are widely used as structural materials in the pressurized water reactors (PWRs) because of their superior mechanical properties and corrosion resistance. However, it is well known that ASSs are susceptible to the environmental assisted cracking (EAC) such as environmental assisted fatigue (EAF) during the long term operation. There have been extensive tests and researches to understand the extent and the mechanisms of environmental effects. In this paper, the world-wide EAF test results of ASSs are introduced including those of Korean test programs. The suggested EAF mechanisms of ASSs are also discussed. Finally, the areas of further research to resolve the issue of EAF are suggested.

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.