• 제목/요약/키워드: Corrosion Damage

검색결과 626건 처리시간 0.026초

지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가 (Evaluation on Bearing Capacity of End Girder Member with Local Corrosion)

  • 안진희;이원홍;김인태;정영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권5호
    • /
    • pp.74-82
    • /
    • 2017
  • 강교량은 유지관리가 충분히 이루어지지 않거나, 해안 과 같이 가설위치의 환경이 고온 다습한 경우 단면에 국부적인 부식손상이 발생할 수 있다. 특히 강거더 교량 의 지점부에서는 교대부와 강거더 단부의 공간이 협소하여 상대적으로 습도가 높고 신축이음부로부터의 강우 및 동결 방지제가 누수되어 침전물을 습윤상태로 유지하게 되므로, 복부판과 지점부 보강재에 집중적으로 부식이 발생되고 있으므로 이로인한 구조성능 변화를 확인하여야 한다. 따라서 본 연구에서는 실제 발생할 수 있는 강거더 단부 복부판과 보강재의 국부부식손상을 모사한 강재 실험체를 제작하고 이에 대한 단부 지압강도 변화를 실험적으로 평가하였다. 실험결과, 국부적 부식손상은 강거더 단부의 지압강도에 영향을 주며, 특히 수직 보강재에 의한 영향이 크게 나타남을 확인하였다.

원전 2차계통의 수화학 변화가 배관감육에 미치는 영향 분석 (Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant)

  • 윤훈;황경모;문승재
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.325-330
    • /
    • 2015
  • Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

부식에 의한 가선재 수명특성에 관한 연구 (The Effect of Corrosion on the Fatigue Life of Catenary Wire)

  • 김용기;장세기;이덕희;정병철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.139.1-146
    • /
    • 2001
  • Contact lines are necessary to supply electric locomotives with electric power. As most railways are gradually electrified with modernized electric cars, the demand for catenary wires and their facilities are also increased. Catenary wires made by metallic materials are generally used in the open air. They are exposed to the marine area with air-borne salt or severely polluted industrial area with much corrosive emission gases depending on the railway locations. In urban area, acid rain may cause a degradation of catenary wire system. Corrosion of catenary wires can make their actual lifetime shorter than that originally designed. Thus, the messenger wires, a kind of catenary wire system, were investigated with respect to corrosion, which include new and the used one collected at the field. They are also vibrated with some amplitude everytime the train passes through the railway. The frequent cyclic load on the wire any result in a fatigue damage, Surface damage by corrosion can make fatigue crack initiate with ease. In the present study, the fatigue life of the used wire was measured 40 to 50% shorter than that of new one in average.

  • PDF

스테인리스강 프로펠러축의 가공에 따른 재질특성에 관한 연구 (Properties of the material on stainless steel propeller shaft with the weld working)

  • 손영태;정광교;이명훈
    • 선박안전
    • /
    • 통권24호
    • /
    • pp.4-20
    • /
    • 2008
  • Stainless steel 304 or stainless steel 630 types using propeller shaft of a small ship or a FRP fishing boat generally restrain localization corrosion and abrasion damage occurrence to shaft bearing or grand packing contact. In general, the residual stress which remains after welding or heat treatment in material can cause the stress concentration or localization corrosion. In case of small ship, stainless steel such as STS304 has long been used for propeller shaft. Meanwhile, crew of small ship tend to reuse damaged propeller shaft after repair by welding and performing heat treatment to save cost. However, it was found that reused propeller shaft by repair often caused troubles in ship's operation. In this study, the basic guideline for maintenance and treatment of propeller shaft are investigated. From the results of investigation, remarkable deterioration of the material properties and corrosion resistance on the welded work part was observed.

  • PDF

차량용 주석 도금된 구리 커넥터에서 미세진동에 의한 전기접촉 저항변화에 관한 연구 (A study on change in electric contact resistance of the tin-plated copper connector of automotive sensor due micro-vibration)

  • 유환신;박형배
    • 한국항행학회논문지
    • /
    • 제12권6호
    • /
    • pp.653-658
    • /
    • 2008
  • 자동차에 적용되는 각종 전자 부품의 복잡도는 21세기를 맞이하면서 급속도로 변화하고 있다. 특히, 각종 전기, 전자 시스템의 급증은 자동차의 안전과 직결되는 문제로 인식되고 있다. 차량의 전장 및 전자부품을 연결해주는 커넥터는 인간의 신경망과 같아서 조그마한 접촉 불량도 차량의 운전에 심각한 영향을 미칠 수 있다. 차량의 진동과 커넥터 단자의 열 변형으로 인한 프레팅 부식은 산화막을 형성하여 접촉저항을 증가시키고 특히 산화층은 진접촉면적의 감소와 상승저항 등 터널 효과에서 급격한 상승을 보이는 결과로 제어신호를 왜곡하여 작동기의 동작오류를 초례한다. 본 논문에서는 이러한 프레팅 부식 현상을 검증하기 위한 주석으로 도금된 구리 커넥터에 스텝핑 모터를 사용하여 일정한 변위를 갖는 미세 진동을 유발하여 프레핑 부식의 진행과 접촉저항의 변화를 고찰하여 이에 대한 대비책을 강구하고자 한다.

  • PDF

해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성 (Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Characteristics of Material Damage Caused by Acid Deposition in East Asia

  • Yoo, Young-Eok;Maeda, Yasuaki
    • 한국환경과학회지
    • /
    • 제11권5호
    • /
    • pp.445-454
    • /
    • 2002
  • Material exposure experiments were performed to evaluate the relationship between air pollution and material corrosion rates based on collaboration with researchers in China, Japan, and Korea. Qualitative and quantitative atmospheric corrosion was estimated from damage caused to bronze, copper, steel, marble, cedar, cypress, and lacquer plates exposed to outdoor and indoor conditions in certain East Asian cities. The effects of atmospheric and meteorological factors on the damage to the copper plates and marble pieces were estimated using a regression analysis. The results indicated that sulfur dioxide produced the most destruction of the materials, especially in South Korea and China. In Japan, the copper plates were damaged as a result of natural conditions and sea salt. Copper was also found to be damaged by the surface deposition of sulfur and chlorine. Meanwhile, marble was substantially degraded by gaseous sulfur dioxide, yet sulfate ions in rain had no effect. Accordingly, the analysis of air pollution from the perspective of material damage was determined to be very useful in evaluating and substantiating the intensity of air pollution in East Asia.

Evaluation method for time-dependent corrosion depth of uncoated weathering steel using thickness of corrosion product layer

  • Kainuma, Shigenobu;Yamamoto, Yuya;Ahn, Jin-Hee;Jeong, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.191-201
    • /
    • 2018
  • The corrosion environments in a steel structure are significantly different depending on the individual parts of the members. To ensure the safety of weathering steel structures, it is important to evaluate the time-dependent corrosion behavior. Thus, the progress and effect of corrosion damage on weathering steel members should be evaluated; however, the predicted corrosion depth, which is affected by the corrosion environment, has not been sufficiently considered until now. In this study, the time-dependent thicknesses of the corrosion product layer were examined to quantifiably investigate and determine the corrosion depth of the corroded surface according to the exposure periods and corrosion environments. Thus, their atmospheric exposure tests were carried out for 4 years under different corrosion environments. The relationship between the thickness of the corrosion product layers and mean corrosion depth was examined based on the corrosion environment. Thus, the micro corrosion environments on the skyward and groundward surfaces of the specimens were monitored using atmospheric corrosion monitor sensors. In addition, the evaluated mean corrosion depth was calculated based on the thickness of the corrosion product layer in an atmospheric corrosion environment, and was verified through a comparison with the measured mean corrosion depth.

고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동 (Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.451-465
    • /
    • 2021
  • In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

  • Visser, A.;Mori, G.;Panzenbock, M.;Pippan, R.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.172-176
    • /
    • 2015
  • Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.