• Title/Summary/Keyword: Corroded Pipeline

Search Result 33, Processing Time 0.021 seconds

Computational Analysis of Structural Behavior of Subsea Pipelines with Local Corrosion (국부 부식을 가지는 심해저 파이프라인의 구조응답에 대한 전산 해석적 연구)

  • Choi, Kwang-Ho;Lee, Chi-Seung;Ryu, Dong-Man;Koo, Bon-Yong;Song, Joon-Kyu;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.100-110
    • /
    • 2015
  • To meet the increasing demand for energy around the world, offshore and subsea energy development is constantly being conducted. This trend is accompanied by an increasing demand for pipeline installation, which brings numerous problems, including those related to accessibility, high pressure, and corrosion. Among these, corrosion is a primary factor in pipeline fractures, and can cause severe environmental and industrial damage. Hence, accurate corrosion assessment for corroded pipelines is very important. For this reason, the present study investigated the mechanical behavior of an idealized corroded subsea pipeline with an internal/external pressure load using the commercial FEA code ABAQUS. Then, the analysis result was compared with corrosion assessment codes such as ASME B31G, DNV RP F101, ABS. Finally, a fitness-for-service assessment was conducted.

Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon (감육현상을 고려한 가스배관의 파손확률 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Serviceability Assessment of Corroded Subsea Crude Oil Pipelines (부식된 해저 원유 파이프라인의 사용적합성 평가)

  • Cui, Yushi;Kim, Dong Woo;Seo, Jung Kwan;Ha, Yeon Chul;Kim, Bong Ju;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Pipelines are one of the most important structures in subsea equipment. It is the main equipment for transportation of crude oil and natural gas to the downstream facilities. Crude oil and natural gas leak will be carry out not only political and financial issues but also pollution to the environment. Inaccurate predictions of corrosion behavior will make hazardous consequences. The serviceability assessment of corroded structures is essential especially for subsea pipelines. As corrosion is concerned, the effects of failure due to significant reduction will make it hard to the pipeline operator to maintain the serviceability of pipelines. In this paper, the serviceability assessment of corroded crude oil pipeline is performed using the industry design code (Shell92, DNV RP F101, ASME B31G, BS 7910, PCORRC) and FEA depending on corrosion area. In last step, the future integrity of the subsea crude oil pipeline is assessed to predict the remaining year in service of crude oil pipelines.

Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference (베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2401-2406
    • /
    • 2015
  • Pipelines are used by large heavy industries to deliver various types of fluids. Since this is important to maintain the performance of large systems, it is necessary to accurately predict remaining life of the corroded pipeline. However, predicting the remaining life is difficult due to uncertainties in the associated variables, such as geometries, material properties, corrosion rate, etc. In this paper, a statistical method for predicting corrosion remaining life is proposed using Bayesian inference. To accomplish this, pipeline failure probability was calculated using prior information about pipeline failure pressure according to elapsed time, and the given experimental data based on Bayes' rule. The corrosion remaining life was calculated as the elapsed time with 10 % failure probability. Using 10 and 50 samples generated from random variables affecting the corrosion of the pipe, the pipeline failure probability was estimated, after which the estimated remaining useful life was compared with the assumed true remaining useful life.

Failure Probability of Corrosion Pipeline with Varying Boundary Condition

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.889-895
    • /
    • 2002
  • This paper presents the effect of external corrosion, material properties, operation condition and design thickness in pipeline on failure prediction using a failure probability model. The predicted failure assessment for the simulated corrosion defects discovered in corroded pipeline is compared with that determined by ANSI/ASME B31G code and a modified B31G method. The effects of environmental, operational, and random design variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress and pipe thickness on the failure probability are systematically studied using a failure probability model for the corrosion pipeline.

A Simplified Method for Predicting Failure Probability of Pipelines with Corrosion Defects (부식결함을 가진 배관의 파손확률 예측을 위한 단순화된 방법)

  • Lee, Jin-Han;Kim, Young-Seob;Kim, Lae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.31-36
    • /
    • 2010
  • An alternative method is presented for predicting failure probability of pipelines with corrosion defects in this paper. The failure of corroded pipeline occurs when the operating pressure is grater than the remaining strength of the pipeline, and a limit state function can be defined as the differences between the remaining strength and the operating pressure. Then, based on structural reliability theory, we can estimate the failure probability of corroded pipeline, which is dependent on elapsed time of the pipeline with active corrosion defects. In this study, a root finding (RF) method has been adopted to solve the limit state function instead of Monte-Carlo simulation (MCS) method which traditionally has been employed to solve those kinds of problems. The calculation results shows that there are only small differences between the RF and the MCS method but the RF has higher efficiency in calculation than the MCS.

Effect of Shape of External Corrosion in Pipeline on Failure Prediction (외부부식의 형상이 파이프라인의 파손예측에 미치는 영향)

  • Lee, Eok-Seop;Kim, Ho-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2096-2101
    • /
    • 1999
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method) with an elastic-plastic and large-deformation analysis. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis are compared with those by methods specified in ANSl/ASME B31G code and a modified B31G code.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

Reliability Assessment for Corroded Pipelines by Separable Monte Carlo Method (Separable Monte Carlo 방법을 적용한 부식배관 신뢰도평가)

  • Lee, Jin-Han;Jo, Young-Do;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.81-86
    • /
    • 2015
  • A deterministic stress-based methodology has traditionally been applied in pipeline design. Meanwhile, reliability based design and assessment (RBDA) methodology has been extensively applied in offshore or nuclear structures. Lately, the release of ISO standard on reliability based limit state methods for pipelines ISO16708 indicates that the RBDA methodology is one of the newest directions of natural gas pipeline design method. This paper presents a case study of the RBDA procedure for predicting the time-dependent failure probability of pipelines with corrosion defects, where separable Monte Carlo (SMC) method is applied in the reliability estimation for corroded pipeline instead of traditional, crude Monte Carlo(CMC) Method. The result shows the SMC method take advantage of improving accuracy in reliability calculation.

Probabilistic Risk Analysis of Dropped Objects for Corroded Subsea Pipelines (부식을 고려한 해저 파이프라인의 확률론적 중량물 낙하 충돌 위험도 해석)

  • Kumar, Ankush;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.93-102
    • /
    • 2018
  • Quantitative Risk Assessment (QRA) has been used in shipping and offshore industries for many years, supporting the decision-making process to guarantee safe running at different stages of design, fabrication and throughout service life. The assessments of a risk perspective are informed by the frequency of events (probability) and the associated consequences. As the number of offshore platforms increases, so does the length of subsea pipelines, thus there is a need to extend this approach and enable the subsea industry to place more emphasis on uncertainties. On-board operations can lead to objects being dropped on subsea pipelines, which can cause leaks and other pipeline damage. This study explains how to conduct hit frequency analyses of subsea pipelines, using historical data, and how to obtain a finite number of scenarios for the consequences analysis. An example study using probabilistic methods is used.