• Title/Summary/Keyword: Correction Analysis

Search Result 2,515, Processing Time 0.027 seconds

MR-based Partial Volume Correction for $^{18}$F-PET Data Using Hoffman Brain Phantom

  • Kim, D. H.;Kim, H. J.;H. K. Jeong;H. K. Son;W. S. Kang;H. Jung;S. I. Hong;M. Yun;Lee, J. D.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.322-323
    • /
    • 2002
  • Partial volume averaging effect of PET data influences on the accuracy of quantitative measurements of regional brain metabolism because spatial resolution of PET is limited. The purpose of this study was to evaluate the accuracy of partial volume correction carried out on $^{18}$ F-PET images using Hoffman brain phantom. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices of the same phantom. All the MR slices of the phantom were then segmented to be binary images. Each of these binary images was convolved in 2 dimensions with the spatial resolution of the PET. The original PET images were then divided by the smoothed binary images in slice-by-slice, voxel-by-voxel basis resulting in larger PET image volume in size. This enlarged partial volume corrected PET image volume was multiplied by original binary image volume to exclude extracortical region. The evaluation of partial volume corrected PET image volume was performed by region of interests (ROI) analysis applying ROIs, which were drawn on cortical regions of the original MR image slices, to corrected and original PET image volume. From the ROI analysis, range of regional mean values increases of partial volume corrected PET images was 4 to 14%, and average increase for all the ROIs was about 10% in this phantom study. Hoffman brain phantom study was useful for the objective evaluation of the partial volume correction method. This MR-based correction method would be applicable to patients in the. quantitative analysis of FDG-PET studies.

  • PDF

Numerical studies of the effect of residual imperfection on the mechanical behavior of heat-corrected steel plates, and analysis of a further repair method

  • Chun, Pang-Jo;Inoue, Junya
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • Heating correction, through heating and flattening a structure with a pressing machine, is the in-situ method used to repair buckled steel structures. The primary purpose of this investigation is to develop an FEM model which can predict the mechanical response of heat-corrected plates accurately. Our model clarifies several unsolved problems. In previous research, the location of the imperfection was limited to the center of the specimen although the mechanical behavior is strongly affected by the location of the imperfection. Our research clarifies the relationship between the location of the imperfection and the mechanical behavior. In addition, we propose further reinforcement methods and validate their effectiveness. Our research concludes that the strength of a buckled specimen can be recovered by heating correction and the use of an adequate stiffener.

A Study of auto-body panel correction of forming analysis that use One-step Forming method (One-step Forming 방법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.89-97
    • /
    • 2005
  • Thin plate correction of forming process that it is nowadays smile change of simple contact surface as it becomes possible that forecast dictionary numerically exactly to analyze comparative big comp displacement real industry spot problems between complicated and abnormal curved line shapes and thin plate and die more reliable and need many efforts yet economical analysis method is required and develops this efficient algorithm. This research analyzes correction of forming and examined possibility and validity of spot application using One-Step Finite Element Method. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A Relative Atomspheric Correction Methods for Water Quality Factors Extraction from Landsat TM data (Landsat TM data로부터 수질인자 추출을 위한 상대적 대기 보정 방법)

  • Yang, In-Tae;Kim, Eung-Nam;Choi, Youn-Kwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.17-25
    • /
    • 1998
  • Recently, there are a lot of studies to use a satellite image data in order to investigate a simultaneous change of a wide range area as a lake. However, many cases of a water quality research occur as problem when we try to extract the water quality factors from the satellite image data, because of the atmosphere scattering exert as bad influence on a result of analysis. In this study, and attempt was made to select the relative atmospheric correction method for the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors was performed by using the multi-temporal image data.

  • PDF

Structural Design of Slope Correction Device (경사 면 보정 장치의 구조 설계에 관한 연구)

  • Kim, Jeong-Hwa;Lee, Do-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.33-39
    • /
    • 2021
  • This paper presents an optimized design technique that can satisfy the design input values. Numerical analysis was performed on the slope correction device based on the first design. The stress distribution was confirmed when the load specified as the design input value was applied, and design changes were introduced for parts for which the design safety factor did not meet the standard to ensure rigidity. And the results were verified through FEA.

The Application of Dynamic Acquisition with Motion Correction for Static Image (동적 영상 획득 방식을 이용한 정적 영상의 움직임 보정)

  • Yoon, Seok-Hwan;Seung, Jong-Min;Kim, Kye-Hwan;Kim, Jae-Il;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • Purpose: The static image of nuclear medicine study should be acquired without a motion, however, it is difficult to acquire static image without movement for the serious patients, advanced aged patients. These movements cause decreases in reliability for quantitative and qualitative analysis, therefore re-examination was inevitable in the some cases. Consequently, in order to improve the problem of motion artifacts, the authors substituted the dynamic acquisition technique for the static acquisition, using motion correction. Materials and Methods: A capillary tube and IEC body phantom were used. First, the static image was acquired for 60 seconds while the dynamic images were acquired with a protocol, 2 sec/frame${\times}$30 frames, under the same parameter and the frames were summed up into one image afterwards. Also, minimal motion and excessive motion were applied during the another dynamic acquisition and the coordinate correction was applied towards X and Y axis on the frames where the motion artifact occurred. But the severe blurred images were deleted. Finally, the resolution and counts were compared between the static image and the summed dynamic images which before and after applying motion correction, and the signal of frequency was analysed after frequency spatial domain was transformed into 2D FFT. Supplementary examination, the blind test was performed by the nuclear medicine department staff. Results: First, the resolution in the static image and summed dynamic image without motion were 8.32 mm, 8.37 mm on X-axis and 8.30 mm, 8.42 mm on Y-axis, respectively. The counts were 484 kcounts, 485 kcounts each, so there was nearly no difference. Secondly, the resolution in the image with minimal motion applying motion correction was 8.66 mm on X-axis, 8.85 mm on Y-axis and had 469 kcounts while the image without motion correction was 21.81 mm, 24.02 mm and 469 kcounts in order. So, this shows the image with minimal motion applying motion correction has similar resolution with the static image. Lastly, the resolution in the images with excessive motion applying motion correction were 9.09 mm on X-axis, 8.83 mm on Y-axis and had 469 kcounts while the image without motion correction was 47.35 mm, 40.46 mm and 255 kcounts in order. Although there was difference in counts because of deletion of blurred frames, we could get similar resolution. And when the image was transformed into frequency, the high frequency was decreased by the movement. However, the frequency was improved again after motion correction. In the blind test, there was no difference between the image applying motion correction and the static image without motion. Conclusion: There was no significant difference between the static image and the summed dynamic image. This technique can be applied to patients who may have difficulty remaining still during the imaging process, so that the quality of image can be improved as well as the reliance for analysis of quantity. Moreover, the re-examination rate will be considerably decreased. However, there is a limit of motion correction, more time will be required to successfully image the patients applying motion correction. Also, the decrease of total counts due to deletion of the severe blurred images should be calculated and the proper number of frames should be acquired.

  • PDF

Simple Method of Analysis of Simply Supported Reinforced Concrete Slab (단순지지된 철근콘크리트 슬래브의 간편한 해석방법)

  • 한봉구;임희수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.392-401
    • /
    • 2002
  • The results of analysis of simply supported reinforced concrete slab by special orthotropic plate theory have been reported. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis of such a plate by means of the beam theory with unit width is reported. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. The plate aspect ratio considered is from 1 : 1 to 1 :6

Watermarking Method using Error Correction Code and its Performance Analysis (Error Correction Code를 이용한 워터마킹 방법과 성능분석)

  • 심혁재;전병우
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.239-242
    • /
    • 2001
  • 영상에 워터마크를 삽입하는 것을 통신채널의 입장에서 해석한다면 워터마크는 신호로, 영상은 잡음으로 모델링이 가능하다. 따라서 이러한 잡음 속에서 신호에 대한 에러를 최소화하는 것이 워터마크의 추출을 최대화하는 것이라 할 수 있다. 통상적으로 Error Correction Code는 에러가 많은 통신채널에서 많이 이용되기 때문에 워터마킹 방법에서도 효과를 기대할 수 있다. 본 논문에서는 DCT 기반의 구간화 워터마킹 방법에 Turbo code를 이용하여 강인성 면에서의 향상된 성능을 실험 결과로 보이며, Turbo code의 해밍거리를 이용하여 워터마킹의 보다 효율적인 검출 방법을 제안한다.

  • PDF

Analysis of error correction capability and recording density of an optical disc system with LDPC code (LDPC 코드를 적용한 광 디스크 시스템의 에러 정정 성능 및 기록 용량 분석)

  • 김기현;김현정;이윤우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.537-540
    • /
    • 2003
  • In this paper, we evaluated error correction performance and recording density of an optical disc system. The performance of Low-Density Parity Check code (LDPC) is compared to the HD-DVD (BD) ECC. The recording density of optical disc can be increased by reducing the redundancy of the user data. Moreover, since the correction capability of LDPC with decreased redundancy is better than that of BD, the recording density can also be increased by reducing the mark length of the data on the disc surface.

  • PDF

ANALYSIS OF A FOURTH ORDER SCHEME AND APPLICATION OF LOCAL DEFECT CORRECTION METHOD

  • Abbas, Ali
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.511-527
    • /
    • 2014
  • This paper provides a new application similar to the Local Defect Correction (LDC) technique to solve Poisson problem -u"(x) = f(x) with Dirichlet boundary conditions. The exact solution is supposed to have high activity in some region of the domain. LDC is combined with a fourth order compact scheme which is recently developed in Abbas (Num. Meth. Partial differential equations, 2013). Numerical tests illustrate the interest of this application.